Toggle light / dark theme

Key nervous system components shown to influence gastrointestinal tumor growth

Australian researchers have identified two nervous system components that drive tumor growth in gastrointestinal cancers, creating promising new avenues for treatment with existing approved therapies.

Our gut contains its very own nervous system and is commonly regarded as the second brain. Key players of this system are neuropeptides, the signaling factors that are produced and released by nerves. These factors relay messages throughout our nervous system by connecting to receptors on the outside of cells, influencing a variety of processes.

The team at the Olivia Newton-John Cancer Research Institute (ONJCRI) and La Trobe School of Cancer Medicine discovered that CGRP, a common neuropeptide, and its receptor RAMP1 influence tumor growth in colorectal and stomach cancers.

Gene variant that protects against norovirus spread with arrival of agriculture, prehistoric DNA reveals

The arrival of agriculture coincided with a sharp rise in a gene variant that protected against the virus that causes winter vomiting, researchers from Karolinska Institutet and Linköping University report after analyzing DNA from over 4,300 prehistoric individuals and cultivating “mini guts.”

Winter vomiting disease is caused by the norovirus, which is most virulent during the colder half of the year. The infection clears up after a couple of days, but the protection it provides is short-lived, meaning that the same person can repeatedly fall sick in a short space of time. But some people cannot succumb to the virus, thanks to a particular gene variant.

“We wanted to trace the historical spread of the gene variant,” says Hugo Zeberg, senior lecturer in genetics at the Department of Physiology and Pharmacology, Karolinska Institutet, and researcher at the Max Planck Institute for Evolutionary Anthropology in Leipzig.

Family and peer conflicts predict teenage mental health issues, study finds

Identifying the factors that contribute to psychopathology and increase the risk of experiencing specific mental health conditions is a long-standing goal for many psychology researchers. While past studies have highlighted the crucial role of some experiences, particularly challenging events unfolding during childhood and adolescence, in the development of mental health disorders, their influence is often difficult to quantify and differentiate from other factors that could contribute to psychopathology.

Recent technological advances, particularly the development of increasingly sophisticated and computational analysis tools, have opened new possibilities for the study of disorders and their underlying patterns. When used to analyze the large amounts of data collected by and professionals over the past decades, these methods could help to uncover correlations between specific variables and hidden trends that are associated with psychopathology.

Researchers at Washington University in St. Louis and Washington University School of Medicine recently set out to explore the possible contribution of different factors to poor mental health among teenagers using data mining techniques (i.e., computational approaches to uncover patterns in data). Their findings, published in Nature Mental Health, suggest that , particularly conflicts between , bullying or a loss of reputation among peers, are the strongest predictors of psychopathology in adolescents.

A flexible lens controlled by light-activated artificial muscles promises to let soft machines see

Inspired by the human eye, our biomedical engineering lab at Georgia Tech has designed an adaptive lens made of soft, light-responsive, tissuelike materials. Our study is published in the journal Science Robotics.

Adjustable camera systems usually require a set of bulky, moving, solid lenses and a pupil in front of a camera chip to adjust focus and intensity. In contrast, human eyes perform these same functions using soft, flexible tissues in a highly compact form.

Our lens, called the photo-responsive hydrogel soft lens, or PHySL, replaces rigid components with soft polymers acting as artificial muscles. The polymers are composed of a hydrogel —a water-based polymer material. This hydrogel muscle changes the shape of a soft lens to alter the lens’s focal length, a mechanism analogous to the ciliary muscles in the human eye.

Chemists create publicly available tool that provides unrivaled look at RNA inside cells

The interior of a cell is packed with proteins and nucleic acids, such as RNA, all of which need to perform specific functions at the exact right time. If they don’t, serious diseases—ALS, Huntington’s or many cancers—can result. But what exactly is happening inside the crowded cell when it malfunctions, and how can these miscues be prevented?

Thanks to a pair of chemists at the University of Massachusetts Amherst, a new publicly available tool called iConRNA provides an unrivaled look at the mysterious world RNA, and could help solve the mystery of how devastating diseases develop.

The research is published in the journal Proceedings of the National Academy of Sciences.

New molecular strategy achieves complete synthesis of anti-MRSA natural product

Spiroaspertrione A is a complex polycyclic compound naturally produced by the fungus Aspergillus sp. TJ23. First isolated in 2017, it quickly drew scientific attention for its promising ability to combat drug-resistant bacteria and restore their sensitivity to existing antibiotics.

Scientists have now found a way to carry out the total synthesis of the molecule in 16 steps, starting from a chiral pool building block called (+)-enoxolone that costs less than one euro per gram. The synthesis technique is presented in Science.

Staphylococcus aureus (staph) is a type of bacteria that quietly lives on our skin and in our noses. It usually does no harm, but when it turns invasive, it triggers dangerous infections like sepsis, pneumonia, and many hospital-acquired infections. What makes it truly alarming is its growing resistance to antibiotics, which can turn treatable infections into deadly threats.

Geographical Expansion of Avian Metapneumovirus Subtype B: First Detection and Molecular Characterization of Avian Metapneumovirus Subtype B in US Poultry

Avian metapneumovirus (aMPV), classified within the Pneumoviridae family, wreaks havoc on poultry health. It typically causes upper respiratory tract and reproductive tract infections, mainly in turkeys, chickens, and ducks. Four subtypes of AMPV (A, B, C, D) and two unclassified subtypes have been identified, of which subtypes A and B are widely distributed across the world. In January 2024, an outbreak of severe respiratory disease occurred on turkey and chicken farms across different states in the US. Metagenomics sequencing of selected tissue and swab samples confirmed the presence of aMPV subtype B. Subsequently, all samples were screened using an aMPV subtype A and B multiplex real-time RT-PCR kit. Of the 221 farms, 124 (56%) were found to be positive for aMPV-B. All samples were negative for subtype A.

Psoriasis-linked gene mutation also impacts gut health, scientists discover

A mutation previously linked to skin disorders like psoriasis may also play a surprising role in gut health, according to new research published by scientists at VIB-UGent and colleagues from UGent, the University of Barcelona, and University College London. This mutation activates skin immune responses but also affects the intestine.

This finding, published in EMBO Molecular Medicine, reveals a new connection between genetics, the immune system, and the gut, which may have therapeutic implications.

Scientists under the leadership of Dr. Inna Afonina and Prof. Rudi Beyaert (VIB-UGent Center for Inflammation Research) have found that a mutation in the gene CARD14, known for activating skin immune responses in psoriasis patients, also affects the intestine. This mutation reduces gut motility, promotes mild inflammation, and increases vulnerability to bacterial infections.

/* */