Toggle light / dark theme

Company wants to bioprint new beating hearts to replace our diseased ones

Summary: A startup wants to develop bioprinted beating hearts using stem cells from a patient’s own body using a special 3D bioprinter. [This article first appeared on LongevityFacts. Author: Brady Hartman. ]

A startup called BioLife4D wants to develop bioprinted beating hearts using a patient’s own cells as solution for patients seeking heart transplants.

As first reported on USAToday, Steven Morris, the CEO founding partner and of BioLife4D says that if the bioprinted heart is successful, the company hopes to expand to other organs including the pancreas or the kidneys.

These cancer vaccines to prevent tumors

Summary: Cancer vaccines could prevent around 1,000,000 cancer deaths each year, according to a report by the World Health Organization this month. [This article first appeared on LongevityFacts. Author: Brady Hartman. ]

In a Feb 2018 report, the World Health Organization (WHO) estimates that infectious diseases cause 15% of all cancer deaths, and universal vaccination could prevent around one million cancers annually, saying.

“Cancer is the second leading cause of death globally, and was responsible for 8.8 million deaths in 2015.” Adding “Globally, nearly 1 in 6 deaths is due to cancer.”

Predicting our body’s biological age with a pee test

Summary: Aging biomarkers found in a simple urine test can potentially measure how much our body has aged and could predict our future health. [This article first appeared on LongevityFacts. Author: Brady Hartman. ]

Determining our biological age and future risk of ill health may be as simple as a urine test one day.

In a new study, a team of researchers led by Jian-Ping Cai in the MOH Key Laboratory of Geriatrics at Beijing Hospital discovered two new aging biomarkers in urine that come from the oxidation of RNA and DNA. The new markers could potentially help predict our risk of developing an age-related disease, and even our risk of death.

Justice Department Drops $2 Million to Research Crime-Fighting AI

The artificial intelligence craze isn’t just hitting Silicon Valley—the Justice Department wants to get in on the action, too.

The agency announced today that it will put $2 million towards research on AI, which it believes could be used to fight human trafficking, illegal border crossings, drug trafficking, and child pornography.

National Institute for Justice, the DoJ’s research wing, is funding the initiative in the hopes that it will help address the opioid crisis and fight crime by helping investigators sift through massive amounts of data.

Researchers Discover How to Supercharge Stem Cells

Researchers at the School of Molecular Sciences at Arizona State University have discovered a potential way to supercharge our stem cells and reverse some aspects of cellular aging.

The Hayflick limit

Normal cells cannot divide indefinitely; they have a built-in replicative limit, which is often called the Hayflick limit after its discoverer, Leonard Hayflick. This Hayflick limit means that regular human cells are unable to replicate forever; once they reach their replicative limit, they cease to divide and enter senescence, a nondividing state in which the cell destroys itself.

All-star team of synthetic biologists raise $53 million for cancer therapy startup Senti

A who’s-who from the world of synthetic biological research have come together to launch Senti Biosciences with $53 million in funding from a slew of venture capital investors.

Led by Tim Lu, a longtime researcher at the Massachusetts Institute of Technology and one of the founding fathers of synthetic biology, Senti’s aim is nothing less than developing therapies that are tailored to an individual’s unique biology — and their first target is cancer.

Here’s how Lu described a potential cancer treatment using Senti’s technology to me. “We take a cell derived from humans that we can insert our genetic circuits into… we insert the DNA and encoding and deliver those cells via an IV infusion. We have engineered the cells to locate where the tumors are… What we’ve been doing is engineering those cells to selectively trigger an immune response against the tumor.”

New technique allows printing of flexible, stretchable silver nanowire circuits

Researchers at North Carolina State University have developed a new technique that allows them to print circuits on flexible, stretchable substrates using silver nanowires. The advance makes it possible to integrate the material into a wide array of electronic devices.

Silver nanowires have drawn significant interest in recent years for use in many applications, ranging from prosthetic devices to wearable health sensors, due to their flexibility, stretchability and conductive properties. While proof-of-concept experiments have been promising, there have been significant challenges to printing highly integrated using silver nanowires.

Silver nanoparticles can be used to print circuits, but the nanoparticles produce circuits that are more brittle and less conductive than silver nanowires. But conventional techniques for printing circuits don’t work well with silver nanowires; the nanowires often clog the printing nozzles.