Menu

Blog

Archive for the ‘biotech/medical’ category: Page 2656

Jan 14, 2016

‘Spermbots’ to aid fertility treatments

Posted by in category: biotech/medical

Scientists have developed motorised ‘spermbots’ by attaching tiny metal helices to sperm cells that can aid poor swimmers to reach an egg, an advance that could improve fertility treatments.

Read more

Jan 14, 2016

Scientists use polymer nano-shell treatment to order bones to repair themselves

Posted by in categories: biotech/medical, life extension, nanotechnology, transportation

Was hit by a car when I was younger and broke my leg. This would have been better then a metal rod. Fascinating.


A team of researchers from the University of Michigan has developed a new technique to aid bone repair, using polymer nano-shells to deliver microRNA molecules. The method could one day have a big impact on regenerative medicine, directing cells already present at injury sites to aid healing.

The new study builds on previous research conducted back in 2011, where nanofiber microspheres were used to carry cells to injury sites to help the wounding process. The new work uses the same idea, but rather than transporting foreign cells, focuses on making better use of the cells already at the wound site.

Continue reading “Scientists use polymer nano-shell treatment to order bones to repair themselves” »

Jan 14, 2016

‘Fountain Of Youth:’ New Hormone Prolongs Lifespan, Decreases Negative Effects Of Aging In Mice

Posted by in categories: biotech/medical, life extension

I was shocked to learn recently that one of the major reasons longevity drugs haven’t been going to human trials, despite obvious promise, is that the FDA requires that any potential drug trial has to have a disease or condition it treats. Because aging hasn’t been seen as a disease or medical condition, no drug trials have been allowed to go forward to treat it. NONE! Finally, late last year, aging has been OFFICIALLY recognized as a disease and is therefor now a valid target disease for drug trials. **sigh**.


Are we one step closer to developing compounds that can extend our lifespan?

Read more

Jan 13, 2016

Watch Scientists Make These Microbots Move With A Magnetic Force Field

Posted by in categories: biotech/medical, nanotechnology, robotics/AI

Interesting and could change as well as acellerate our efforts around bot technology and humans as well as other areas of robotic technology.


Like Jedi Knights, researchers at Purdue University are using the force — force fields, that is. (Photo : Windell Oskay | Flickr)

Continue reading “Watch Scientists Make These Microbots Move With A Magnetic Force Field” »

Jan 13, 2016

7 Mind-Blowing Digital Health Tools That Could Disrupt Health Care in 2016

Posted by in categories: biotech/medical, computing, cyborgs, electronics, existential risks, health, wearables

Wow!!! Chewing gum wearable technology, Cyborg Chips, Ingestible sensors to let doctors know if you’re taking your meds, etc. 2016 is going to be interesting


The phrase “Brave New World” has become one of the most often used clichés in medical technology in recent years. Google the title of Aldous Huxley’s 1932 dystopian, and anticipatory, novel with the word medicine and 2,940,000 results appear.

But could there be better shorthand to describe some of the recent developments in medical, health and bio-tech? Consider these possibilities coming to fruition, or close to, in 2016:

Continue reading “7 Mind-Blowing Digital Health Tools That Could Disrupt Health Care in 2016” »

Jan 13, 2016

Scientists have started growing human fallopian tubes in the lab

Posted by in categories: biotech/medical, health

Researchers in Germany have successfully grown the innermost layer of human fallopian tubes in the lab — the first step towards creating a functional model that will allow scientists to study how reproductive diseases such as cancer start, as well as provide important insight into the enigmatic organs.

The fallopian tubes play a crucial role in the female reproductive system by connecting the ovaries to the uterus, but recent research has suggested that if fallopian tube cells become infected, they can migrate, and could be a key trigger for ovarian cancer — one of the most deadly types of female reproductive cancer.

Despite the importance of these organs, we have a lot to learn about how they function, particularly on the inside — an area that (as you can imagine) is particularly challenging for scientists to study while their patients are alive.

Read more

Jan 13, 2016

Does our Microbiome Control Us or Do We Control It?

Posted by in categories: biotech/medical, chemistry, food, genetics, health, neuroscience

This is an interesting conjecture.


We may be able to keep our gut in check after all. That’s the tantalizing finding from a new study published today that reveals a way that mice—and potentially humans—can control the makeup and behavior of their gut microbiome. Such a prospect upends the popular notion that the complex ecosystem of germs residing in our guts essentially acts as our puppet master, altering brain biochemistry even as it tends to our immune system, wards off infection and helps us break down our supersized burger and fries.

In a series of elaborate experiments researchers from Harvard Medical School and Brigham and Women’s Hospital discovered that mouse poop is chock full of tiny, noncoding RNAs called microRNAs from their gastrointestinal (GI) tracts and that these biomolecules appear to shape and regulate the microbiome. “We’ve known about how microbes can influence your health for a few years now and in a way we’ve always suspected it’s a two-way process, but never really pinned it down that well,” says Tim Spector, a professor of genetic epidemiology at King’s College London, not involved with the new study. “This [new work] explains quite nicely the two-way interaction between microbes and us, and it shows the relationship going the other way—which is fascinating,” says Spector, author of The Diet Myth: Why the Secret to Health and Weight Loss Is Already in Your Gut.

Continue reading “Does our Microbiome Control Us or Do We Control It?” »

Jan 13, 2016

DNA ‘lock and key’ allows for precision drug delivery to target cancer and other cells

Posted by in categories: biotech/medical, nanotechnology

DNA-based lock-and-key pore design allows for precision delivery of drugs to cancer and other cells (credit: Stefan Howorka and Jonathan Burns/UCL)

Scientists at University College London (UCL) and Nanion Technologies in Munich have developed synthetic DNA-based pores that control which molecules can pass through a cell’s wall, achieving more precise drug delivery.

Therapeutics, including anti-cancer drugs, are ferried around the body in nanoscale carriers called vesicles, targeted to different tissues using biological markers. The new DNA-based pore design is intended to improve that process.

Read more

Jan 13, 2016

Could this common painkiller become a future cancer-killer?

Posted by in categories: biotech/medical, futurism

Cancer cells (credit: iStock)

Diclofenac, a common painkiller, has significant anti-cancer properties, researchers from the Repurposing Drugs in Oncology (ReDO) project have found.

ReDO, an international collaboration between the Belgium-based Anticancer Fund and the U.S.- based GlobalCures, has published their investigation into diclofenac in the open-access journal ecancermedicalscience.

Read more

Jan 13, 2016

Swallowing this smart nano pill could stop us from making diet mistakes

Posted by in categories: biotech/medical, electronics, food

It’s not always talked about in polite company, but your body produces a lot of gases scientists know little about.

A new smart pill, designed at Melbourne’s RMIT University, could help us learn more and may eventually assist in customising what we eat to suit our bodies.

Researchers from the Centre for Advanced Electronics and Sensors have developed the pill, which can measure intestinal gases, and they have now undertaken the first animal tests using the technology to examine the impact of fibre on the gut.

Read more