Category: biotech/medical – Page 2,283

Graphene boosts microscope resolution by a factor of 10
Sub-nanometre resolution in 3D position measurements of light-emitting molecules has been achieved by physicists in Germany. Jörg Enderlein and colleagues at the University of Göttingen achieved the result by replacing metal films used in previous super-resolution techniques with single layers of graphene. Their innovation could allow researchers in a wide variety of fields to measure molecular positions to unprecedented degrees of accuracy.
Recently, the technique of single-molecule localization super-resolution microscopy (SMLM) has become an incredibly useful tool for researchers in fields ranging from fundamental physics to medical research. By analysing images of single light-emitting molecules, researchers can pinpoint the positions of their centres to within single atomic widths. However, SMLM faces one significant shortcoming: it can only locate molecules in 2D, giving no information about their positions along the out-of-plane axis.
This problem can be partially overcome through the technique of metal-induced energy transfer (MIET), which introduces a thin metal film to the setup. The idea is that the apparatus picks up changes in the molecule’s fluorescence that are caused by the molecule coupling to collective excitations of surface plasmons in the film. Since this light emission varies with distance from the film, researchers can use MIET to calculate the molecule’s distance relative to the film surface, allowing them to locate it along the third axis. Yet with current versions of the technique, the accuracy of this out-of-plane measurement is 3–5 times worse than that of lateral localization, in the plane of the film.

Scientists Use Nanoparticles to Send Cancer Fighting Agent to Cells
When it comes to finding new treatments for cancer scientitists have been focusing on an anti-cancer agent known as Small interfering ribonucleic acid (siRNA). But getting this agent to cancer cells has been a challenge.
Scientists have developed a platform using nanoparticles to send a cancer-fighting agent to cells.

Gene-Hacking Mosquitoes to Be Infertile Backfired Spectacularly
On its surface, the plan was simple: gene-hack mosquitoes so their offspring immediately die, mix them with disease-spreading bugs in the wild, and watch the population drop off. Unfortunately, that didn’t quite pan out.
The genetically-altered mosquitoes did mix with the wild population, and for a brief period the number of mosquitoes in Jacobino, Brazil did plummet, according to research published in Nature Scientific Reports last week. But 18 months later the population bounced right back up, New Atlas reports — and even worse, the new genetic hybrids may be even more resilient to future attempts to quell their numbers.

Johns Hopkins Breakthrough Opens the Door for Stem Cell Transplants to Repair the Brain
Transplanted brain stem cells survive without anti-rejection drugs in mice. By exploiting a feature of the immune system, researchers open the door for stem cell transplants to repair the brain.
In experiments in mice, Johns Hopkins Medicine researchers say they have developed a way to successfully transplant certain protective brain cells without the need for lifelong anti-rejection drugs.
A report on the research, published today (September 16, 2019) in the journal Brain, details the new approach, which selectively circumvents the immune response against foreign cells, allowing transplanted cells to survive, thrive and protect brain tissue long after stopping immune-suppressing drugs.
Death is Inevitable but Aging is Not
Age is not the definitive factor it’s made out to be when it comes to our health. We can use our age as a baseline for tracking our health and longevity, but it isn’t stagnant. For example, certain types of testing can help us compare our biological age to our calendar age in order to tinker with our wellness routine and achieve the milestones we’re after. With the right steps, we can slow down and even sometimes reverse the aging process.
When it comes to our biological age, or the measure of how well our body is actually functioning for whatever life stage we are in, there are many things that impact it. Diet, lifestyle patterns like exercise and sleep, and stress are all involved in forming our biological age, along with many other factors like blood sugar, inflammation, and genetics. This week on The Doctor’s Farmacy, I’m joined by Dr. David Sinclair to explore the topic of longevity and anti-aging and how he reduced his own internal age by more than 20 years. Dr. Sinclair is a professor in the Department of Genetics and co-director of the Paul F. Glenn Center for the Biology of Aging at Harvard Medical School, where he and his colleagues study longevity, aging, and how to slow its effects.
This episode of The Doctor’s Farmacy is brought to you by ButcherBox. Now through September 29, 2019, new subscribers to ButcherBox will receive ground beef for life. When you sign up today, ButcherBox will send you 2lbs of 100% pasture-raised grass-fed, grass finished beef free in every box for the life of your subscription. Plus listeners will get an additional $20 off their first box. All you have to do is head over to ButcherBox.com/farmacy
_____________________________________
Dr. Hyman is an 11-time New York Times bestselling author, family physician and international leader in the field of Functional Medicine. His podcast, The Doctor’s Farmacy, is a place for deep conversations about the critical issues of our time in the space of health, wellness, food and politics. New episodes are released every Wednesday here on YouTube, and wherever you listen to podcasts.
Find him and more of his content all over social media:
Website http://www.drhyman.com/

Nanoparticles used to transport anti-cancer agent to cells
Scientists from the University of Cambridge have developed a platform that uses nanoparticles known as metal-organic frameworks to deliver a promising anti-cancer agent to cells.
Research led by Dr. David Fairen-Jimenez, from the Cambridge Department of Chemical Engineering and Biotechnology, indicates metal-organic frameworks (MOFs) could present a viable platform for delivering a potent anti-cancer agent, known as siRNA, to cells.
Small interfering ribonucleic acid (siRNA), has the potential to inhibit overexpressed cancer-causing genes, and has become an increasing focus for scientists on the hunt for new cancer treatments.

Research suggests new approach for treating inflammation
Medications that mitigate inflammation caused by a variety of diseases including rheumatic arthritis may also compromise a person’s immune system, but a new approach points to a possible solution to this problem.
Researchers have discovered a mechanism that might alleviate inflammation by suppressing the migration of a type of white blood cells called neutrophils. The cells migrate within tissues in order to kill pathogens but may also cause excessive inflammation, resulting in tissue injury and other adverse effects.
The scientists identified a genetic molecule called miR-199, a type of “microRNA,” which reduces the migration of neutrophils, therefore potentially relieving inflammation without compromising the immune system.

Robin Farmanfarmaian’s Mission: To Empower The Healthcare Consumer
Ira Pastor, ideaXme longevity and aging ambassador and Founder of Bioquark, interviews Robin Farmanfarmaian, medical futurist, bestselling author, professional speaker, and CEO and Co-Founder of ArO.
Ira Pastor Comments:
In 2019, we are spending over $7 trillion around the globe on healthcare. $1 trillion goes to pharmaceutical products, $350 billion to medical devices, $200 billion new life sciences R&D, and on and on.
We tend to forget how much consolidation has occurred in these different healthcare segments. The world’s 10 largest pharmaceutical companies control 60% of that trillion dollar market. The top 8 insurance companies in the U.S. control over 50% of all individual patient coverage. In 43 countries, which account for 3/4 the world’s population, patients only have appointment times between 5- 10 minutes with their primary care physicians. As patients, we know what it’s like to feel somewhat separated and insignificant in this system.
We usually talk on this show about the future, and the amazing technologies and products coming down the pipeline for more dramatic things, such as complex regeneration, disease reversion, radical life extension and so forth, but it’s equally important to speak on how we as individuals and patients can put ourselves back in the driver’s seat and not just be an afterthought in the equation.
Today’s guest, who knows a lot about this topic, is Ms. Robin Farmanfarmaian. Robin is a medical futurist, entrepreneur, bestselling author, and professional speaker. She focuses on the future of integrated medicine, the changing role of patients in healthcare decision-making, and how technology will change the way we experience and interact with medical facilities and physicians.