Toggle light / dark theme

face_with_colon_three


The tiny hydra, a freshwater invertebrate related to jellyfish and corals, has an amazing ability to renew its cells and regenerate damaged tissue. Cut a hydra in half, and it will regenerate its body and nervous system in a couple of days. Researchers at the University of California, Davis have now traced the fate of hydra’s cells, revealing how three lines of stem cells become nerves, muscles or other tissues.

Celina Juliano, assistant professor in the UC Davis Department of Molecular and Cellular Biology, project scientist Stefan Siebert and colleagues including Jeff Farrell, a postdoctoral researcher at Harvard University, sequenced the RNA transcripts of 25,000 single hydra cells to follow the genetic trajectory of nearly all differentiated cell types.

“The beauty of single-cell sequencing and why this is such a big deal for developmental biologists is that we can actually capture the genes that are expressed as cells differentiate from stem cells into their different cell types,” Juliano said.

Circa 2008


A recent study demonstrates that the use of an acute, localized static magnetic field of moderate strength can result in significant reduction of swelling when applied immediately after an inflammatory injury. Magnets have been touted for their healing properties since ancient Greece. Magnetic therapy is still widely used today as an alternative method for treating a number of conditions, from arthritis to depression, but there hasn’t been scientific proof that magnets can heal.

Lack of regulation and widespread public acceptance have turned magnetic therapy into a $5 billion world market. Hopeful consumers buy bracelets, knee braces, shoe inserts, mattresses, and other products that are embedded with magnets based on anecdotal evidence, hoping for a non-invasive and drug-free cure to what ails them.

“The FDA regulates specific claims of medical efficacy, but in general static magnetic fields are viewed as safe,” notes Thomas Skalak, professor and chair of biomedical engineering at U.Va.

On the first page of Heinz Koop’s fecal analysis test results, a bar showed where he fell on a gradient from green to red. A label above said, in German: “Overall dysbiosis.” Koop was not in the green or even the yellow regions, but a worrisome orange. It was a bad result — but, he says, “I was kind of happy.”

Doctors hadn’t given him a satisfying answer about his recurring bloody diarrhea and other gut troubles. But Koop had learned on Facebook that he could test his gut microbiome — the community of bacteria and other organisms living in his gastrointestinal tract — to look for problems. Koop ordered a test from a German laboratory called Medivere. The results said his gut microbes were imbalanced, which was something he thought he could treat. Soon he would be attempting to correct this imbalance by chauffering a friend’s fresh stool samples home to implant up his own colon.

Trillions of microbes living on and in our bodies, especially our guts, make up our microbiome. The bugs in our bowel are not just there to slow down our poop, as one researcher speculated in 1970, but are intricately connected to our health. Gut microbes help us digest our food, make critical vitamins, and keep pathogens out. Over the past decade or so, research into the microbiome has exploded as researchers have tried to tease apart the complex connections between our diseases and our resident microbes.

Deadly conditions like leukaemia, sepsis and malaria could be drawn from the body using magnets, after a British engineer designed a blood filtering system which sieves away disease.

Dr George Frodsham, came up with the idea while studying how magnetic nanoparticles can be made to bind to cells in the body, to allow, for example those cells to show up on scanners.

But he realised that if it was possible to magnetise cells for imaging, it should also be possible to then suck them out of the blood.

“What foundational values need to be in place for an ethical utilitronium shockwave?”


What foundational values need to be in place for an ethical utilitronium shockwave?
We discuss:
- (following on from a previous video) more on Nozick’s experience machines (see https://www.youtube.com/watch?v=CxBvNbuYud0).
- given that in each age there has been different conceptions of utopia, what would utopia be for a post-human superintelligence?
- classical utilitarian vs negative utilitarian approaches to the long term good of life in the universe.
- whether a perfect decision theory would be equal to negative utilitarianism.
- how much attention should we give to preferences in improving well-being beyond eliminating suffering?
- if one does believe in the objectivity of value should we be concerned about being damned in a local maximum of well-being?
- what is God’s utility function?

https://youtu.be/0uKNVVVdqrI #ethics #utilitarianism #futurology

Filmed inside the Melbourne Museum in Victoria, Australia.

David Pearce is interested in the use of biotechnology to abolish suffering throughout the living world: http://abolitionist.com