Toggle light / dark theme

A stealthy new drug-delivery system disguises chemotherapeutics as fat in order to outsmart, penetrate and destroy tumors.

Thinking the drugs are tasty fats, tumors invite the drug inside. Once there, the targeted drug activates, immediately suppressing tumor growth. The drug also is lower in toxicity than current chemotherapy drugs, leading to fewer side effects.

“It’s like a Trojan horse,” Northwestern University’s Nathan Gianneschi, who led the research. “It looks like a nice little fatty acid, so the tumor’s receptors see it and invite it in. Then the drug starts getting metabolized and kills the tumor cells.”

Dr. Wim Melis from the University of Greenwich is working on deconstructing and reconstructing audio signals with extremely high accuracy.

Audio is captured and, from there, converted into a spiking signal—the type the uses. This is then fed into the brain and reconstructed as a 90–100 percent replica of the original sound.

Current technologies, known as , only achieve a fraction of this. They do the work of damaged parts of the inner ear (cochlea) to provide sound signals to the brain, whereas hearing aids make sounds louder.

Scientists at Berkeley Lab have made a new material that is both liquid and magnetic, opening the door to a new area of science in magnetic soft matter. Their findings could lead to a revolutionary class of printable liquid devices for a variety of applications from artificial cells that deliver targeted cancer therapies to flexible liquid robots that can change their shape to adapt to their surroundings. (Video credit: Marilyn Chung/Berkeley Lab; footage of droplets courtesy of Xubo Liu and Tom Russell/Berkeley Lab)

The three-hour event was part marketing spectacle and part dry technical explainer. Musk and his team members described the brain-machine interface design they’re betting on, which will employ dozens of thin wires to collect signals in the brain, and which they want to try out on paralyzed people soon, so they can type with their minds. Their eventual aim is to connect those wires to a thought transmitter which tucks behind your ear like a hearing aid.


Well, it’s pretty cool. It seemed like maybe it will work the way they want down the road, but it probably doesn’t work that way now. A couple of years ago, when I heard he was working with a neural interface, I said I would be there in a heartbeat. I was joking, but it’s interesting to think about what I am going to do when I get explanted. I am coming up on my five years. Then the FDA says my implants may have to come out. Neuralink talked about longevity of the implant and also a large number of electrodes. I always say I wish they had put more electrodes into me.

Basically, the more electrodes you have, the more neurons you record from, so I would imagine higher-degree tasks would be easier. I am limited to thinking about my right arm and hand. I thought it would be good to have more control. I always want to play more video games.

I was going to school at Penn State, Fayette, for nanofabrication, so I didn’t have a job, I was in school.

Using a new technique, scientists have performed the world’s smallest magnetic resonance imaging to capture the magnetic fields of single atoms. It’s an incredible breakthrough that could improve quantum research, as well as our understanding of the Universe on subatomic scales.

“I am very excited about these results,” said physicist Andreas Heinrich of the Institute for Basic Sciences in Seoul. “It is certainly a milestone in our field and has very promising implications for future research.”

You’re probably most familiar with magnetic resonance imaging, or MRI, as a method used to image internal body structures in medicine. An MRI machine uses highly powerful magnets to induce a strong magnetic field around the body, forcing the spin of the protons in the nuclei of your body’s hydrogen atoms to align with the magnetic field, all without producing side-effects.

Scientists believe even moderate amounts of exercise can slow cognitive decline in people at risk of developing Alzheimer’s disease.

A study published in the journal JAMA Neurology found a total of around 8,900 steps per day appeared to slow rates of cognitive decline and brain volume loss in people who were at high risk. The individuals were considered at risk because of the levels of amyloid beta—a protein thought to play a role in Alzheimer’s— in their brain.

Dr. Jasmeer Chhatwal, Assistant Professor at Harvard Medical School and co-author of the research, told Newsweek: “These results suggest that very achievable levels of physical activity may be protective in those at high risk of cognitive decline and that this effect can be augmented further by lowering vascular risk.” Vascular risk factors include high blood pressure, obesity, smoking, diabetes, he explained.

You OWN your DNA data Let’s keep it that way.


EDNA Members monetize their genetic data by selling access to their data direct to researchers. With an average selling price of $350.00 and an average expectancy of up to 200 deals, this can translate to as much as $70,000.00 per person. Intended use and licensing of this data is controlled by smart contract and may include posted bonds provided by researchers to insure confidentiality and security of the data. Don’t give away this highly-valuable property. Claim it for yourself. Opt-In only when YOU decide. It’s your property and you should be in control.

My mission is to drastically improve your life by helping you break bad habits, build and keep new healthy habits to make you the best version of yourself. I read the books and do all the research and share my findings with you!

This video is an interview of Dr. Aubrey de Grey @ SENS on July 17, 2019. My wife, Lauren Nally, was our camerawoman.

- Please consider a donation so I can continue to keep my YouTube ads off: My Bitcoin Cash (BCH) address: qr9gcfv92pzwfwa5hj9sqk3ptcnr5jss2g78n7w6f2 or https://www.paypal.me/BrentNally
- Please consider a donation to SENS: https://www.sens.org/

SHOW NOTES:

Researchers from Johns Hopkins University have published a new study that sheds light on skin rejuvenation, and it shares a link with what some cosmetic companies are doing using laser therapy.

A link between cosmetics and regeneration

During their study, the researchers found that the laser treatments used by cosmetic companies and retinoic acid, which is produced by the skin and sold commercially to treat wrinkles and sun damage, also target the same pathway. In addition, they also found that the activity of this pathway is increased in mice when they regenerate their hair follicles [1].