Toggle light / dark theme

Australian man arrested and accused of running world’s largest darknet site

ABC News: German authorities accuse Australian man of running DarkMarket, the world’s largest illegal online marketplace.


An Australian is allegedly at the centre of what German authorities believe was the biggest illegal marketplace on the darknet where more than $220 million was transacted over sales of drugs, forged money, SIM cards and bogus credit cards.

Scientists investigate phages that can kill the world’s leading superbug, Acinetobacter baumannii

A major risk of being hospitalised is catching a bacterial infection.

Hospitals, especially areas including intensive care units and surgical wards, are teeming with bacteria, some of which are resistant to —they are infamously known as ‘superbugs’.

Superbug infections are difficult and expensive to treat, and can often lead to dire consequences for the patient.

One in Five Brain Cancers Fueled by Overactive Mitochondria

Summary: 20% of glioblastoma brain cancers are fueled by overactive mitochondria. Researchers say these cases may be treatable by drugs currently under trial.

Source: Columbia University.

A new study has found that up to 20% of glioblastomas–an aggressive brain cancer–are fueled by overactive mitochondria and may be treatable with drugs currently in clinical trials.

Scientists Discover a Way to Control the Immune System’s “Natural Killer” Cells With “Invisible” Stem Cells

UC San Francisco scientists have discovered a new way to control the immune system’s “natural killer” (NK) cells, a finding with implications for novel cell therapies and tissue implants that can evade immune rejection. The findings could also be used to enhance the ability of cancer immunotherapies to detect and destroy lurking tumors.

The study, published today (January 82021) in the Journal of Experimental Medicine, addresses a major challenge for the field of regenerative medicine, said lead author Tobias Deuse, MD, the Julien I.E. Hoffman, MD, Endowed Chair in Cardiac Surgery in the UCSF Department of Surgery.

“As a cardiac surgeon, I would love to put myself out of business by being able to implant healthy cardiac cells to repair heart disease,” said Deuse, who is interim chair and director of minimally invasive cardiac surgery in the Division of Adult Cardiothoracic Surgery. “And there are tremendous hopes to one day have the ability to implant insulin-producing cells in patients with diabetes or to inject cancer patients with immune cells engineered to seek and destroy tumors. The major obstacle is how to do this in a way that avoids immediate rejection by the immune system.”

DARPA Seeks Compact, Deployable Electron Accelerator

New program aims to build and demonstrate ruggedized device for tactical applications.

Like.

Comment.


Linear accelerators, LINACs for short, are devices that accelerate electrons or other sub-atomic particles along a straight line to generate a beam of high energy. LINACs have a variety of commercial uses such as generating X-rays for cargo inspection, medical diagnostics, food sterilization, and even enabling precise external radiation treatments to destroy cancer cells without damaging surrounding tissue. To generate more powerful electron beams using current technology, however, requires building larger LINACs that can grow to dozens of meters or longer depending on the application. Unfortunately, powerful LINACs are too large and heavy to be practical for military use in the field.

DARPA has announced its Advanced Concept Compact Electron Linear-accelerator (ACCEL) program whose goal is to develop a powerful, deployable electron LINAC. A webinar Proposers Day for potential proposers is scheduled for January 282021.

“A high-power compact, rugged accelerator that could be transported by truck or aircraft to austere locations would provide multiple defense and homeland security benefits,” said Col. Dan “Animal” Javorsek, ACCEL program manager. “It could be used for medical treatments in locales without advanced hospitals, remote detonation of Improvised Explosive Devices, and mobile imaging or inspection of shipping containers’ contents to counter chem-bio and radiological threats. A deployable LINAC could also enable portable sterilization for foods and surfaces to prevent contamination and infection in deployed environments.”

DARPA Looks to Light up Integrated Photonics with Chip-Scale Laser Development

DARPA Looks to Light up Integrated Photonics with Chip-Scale Laser DevelopmentAgency announces performer teams selected for LUMOS program.

Like.

Comment.


First demonstrated sixty years ago, the laser has become an essential technology in today’s world. It has transformed diverse fields including communications, sensing, manufacturing, and medicine. More recently, innovations in integrated photonics have allowed the miniaturization of key optical components and the ability to arrange several elements on a single silicon chip. When combined with lasers, these photonic integrated circuits (PICs) have the potential to replace large and costly optical systems with chip-scale solutions. However, due to differences in the properties of the materials that compose them, lasers and PICs are difficult to combine onto the same platform, limiting the benefits of integration and preventing broad technology impact.

To address this challenge, DARPA developed the Lasers for Universal Microscale Optical Systems (LUMOS) program, which aims to bring high-performance lasers to advanced photonics platforms. As highlighted in the recent program kick-off meeting, LUMOS will address several commercial and defense applications by directing efforts across three distinct Technical Areas.

The first LUMOS Technical Area brings high-performance lasers and optical amplifiers into advanced domestic photonics manufacturing foundries. Two research teams were selected in this area: Tower Semiconductor and SUNY Polytechnic Institute. These performers will work to demonstrate flexible, efficient on-chip optical gain in their photonics processes to enable next-generation optical microsystems for communications, computing, and sensing. LUMOS technologies will be made available to future design teams through DARPA-sponsored multi-project wafer runs.

/* */