Toggle light / dark theme

Harvard scientists create gene-editing tool that could rival CRISPR

Harvard’s Wyss Institute has created a new gene-editing tool that enable scientist to perform millions of genetic experiments simultaneously.


Researchers from the Harvard’s Wyss Institute for Biologically Inspired Engineering have created a new gene-editing tool that can enable scientists to perform millions of genetic experiments simultaneously. They’re calling it the Retron Library Recombineering (RLR) technique, and it uses segments of bacterial DNA called retrons that can produce fragments of single-stranded DNA.

When it comes to gene editing, CRISPR-Cas9 is probably the most well-known technique these days. It’s been making waves in the science world in the past few years, giving researchers the tool they need to be able to easily alter DNA sequences. It’s more accurate than previously used techniques, and it has a wide variety of potential applications, including life-saving treatments for various illnesses.

However, the tool has some major limitations. It could be difficult to deliver CRISPR-Cas9 materials in large numbers, which remains a problem for studies and experiments, for one. Also, the way the technique works can be toxic to cells, because the Cas9 enzyme — the molecular “scissors” in charge of cutting strands of DNA — often cuts non-target sites as well.

India is churning out billion-dollar startups. Now they need to start making money

The mood a year later is very different, despite a brutal surge in coronavirus cases that is threatening the economic recovery. India’s startup community has found itself in an unprecedented funding bonanza.


In the first four months of 2021, 11 startups have attained unicorn status, meaning they’ve reached a valuation of at least $1 billion.

AI Challenges For The Health IT Industry: Should We Expect Electronic Doctors?

Yes, but they wont be trusted til 2035.


Current trends in AI use in healthcare lead me to posit that this market will significantly grow in the coming years. So, should leaders in healthcare expect the emergence of a fully automated electronic physician, sonographer or surgeon as a replacement for the human healthcare professional? Can the development of AI in healthcare help overcome the difficulties the industry faces today? To figure all this out, I would like to analyze the current challenges of using AI in healthcare.

Let’s discuss two promising examples: the application of AI in diagnosis and reading images, and the use of robotic systems in surgery.

Diagnostic Robots: Accuracy And Use For Treatment Recommendations

The success of AI in diagnosing is confirmed by the results of its application in a number of medical studies — for example, in optical coherence tomography (OCT), which requires serious qualifications. Google’s AI-based DeepMind Health system, for instance, demonstrates 94% accuracy of diagnoses for over 50 types of eye diseases in an early trial. Nevertheless, the system operates in conjunction with human experts.

Surprise in the Deep Sea: Researchers Discover Unexpected Paths on the Ocean Floor

Sponges: They are considered to be one of the most primitive forms of animal life, because they have neither locomotion organs nor a nervous system. A team around deep-sea scientist Antje Boetius has now discovered that sponges leave trails on the sea floor in the Arctic deep sea. They conclude that the animals might move actively — even if only a few centimeters per year. They are now publishing these unique findings in the journal Current Biology.

The surprise was great when researchers looked at high-resolution images of the sea floor of the Arctic deep sea in detail: Path-like tracks across the sediments ended where sponges were located. These trails were observed to run in all directions, including uphill. “We conclude from this that the sponges might actively move across the sea floor and leave these traces as a result of their movement,” reports Dr Teresa Morganti, sponge expert from the Max Planck Institute for Marine Microbiology in Bremen. This is particularly exciting because science had previously assumed that most sponges are attached to the seafloor or are passively moved by ocean currents and, usually down slopes.

‘Pokemonas’: Bacteria related to lung parasites discovered, named after Pokémon

Gotta catch them all because this one may cause legionnaires diesease.

“Institute of Zoology have named one of the newly discovered bacteria ‘Pokemonas’ because they live in spherical amoebae, comparable to Pokémon in the video game, which are caught in balls.”


A research team at the University of Cologne has discovered previously undescribed bacteria in amoebae that are related to Legionella and may even cause disease. The researchers from Professor Dr. Michael Bonkowski’s working group at the Institute of Zoology have named one of the newly discovered bacteria ‘Pokemonas’ because they live in spherical amoebae, comparable to Pokémon in the video game, which are caught in balls. The results of their research have been published in the journal Frontiers in Cellular and Infection Microbiology.

Bacteria of the order Legionellales have long been of scientific interest because some of these bacteria are known to cause lung disease in humans and animals—such as “Legionnaires’ disease,” which is caused by the species Legionella pneumophila and can sometimes be fatal. Legionellales bacteria live and multiply as intracellular parasites in the cells of organisms as hosts. In particular, the hosts of Legionellales are . The term ‘amoeba’ is used to describe a variety of microorganisms that are not closely related, but share a variable shape and crawling locomotion by means of pseudopods. “We wanted to screen amoebae for Legionellales and chose a group of amoebae for our research that had no close relationship to the hosts that were previously studied. The choice fell on the amoeba group Thecofilosea, which is often overlooked by researchers,” explains Marcel Dominik Solbach.

And indeed, the spherical Thecofilosea serve as host organisms for Legionellales. In Thecofilosea amoebae from environmental samples, the scientists were able to detect various Legionellales species, including two previously undescribed genera and one from the genus Legionella. “The results show that the range of known host organisms of these bacteria is considerably wider than previously thought. In addition, these findings suggest that many more amoebae may serve as hosts for Legionellales—and thus potentially as vectors of disease. To investigate this further, we are now sequencing the complete genome of these bacteria,” said Dr. Kenneth Dumack, who led the project.

Perfectionistic cognitions appear to play a key role in clinical anxiety

A new study found that perfectionist thinking patterns contributed to posttraumatic stress disorder (PTSD) and generalized anxiety disorder (GAD) symptoms, over and above several known control variables. The findings were published in Cognitive Behaviour Therapy.

Perfectionism involves a desire to perform to the highest standards without allowing room for failure. People with perfectionist beliefs tend to be overly self-critical and put pressure on themselves to perform flawlessly at all times. While perfectionism is often seen as a favorable trait, the attribute has been linked to numerous anxiety disorders such as obsessive compulsive disorder (OCD) and social anxiety disorder (SAD).

Researchers have recently begun exploring the thought patterns that characterize perfectionism — called perfectionist cognitions (PC). As study author Jeremy Tyler and his team say, perfectionist cognitions include expectations about achieving perfection such as, “I can’t stand to make mistakes.” These cognitions have been linked to dysfunctional mental health symptoms like obsessions, distress, and anxiety. However, these associations have yet to be explored among a clinical population.

New genetic target for blood cancer treatment

Targeting a pathway that is essential for the survival of certain types of acute myeloid leukaemia could provide a new therapy avenue for patients, the latest research has found.

Researchers from the Wellcome Sanger Institute found that a specific genetic mutation, which is linked with poor prognosis in blood cancer, is involved in the development of the disease when combined with other mutations in mice and human cell lines.

The study, published today (30th April) in Nature Communications, provides a greater understanding of how the loss-of-function mutation in the CUX1 gene leads to the development and survival of acute myeloid leukaemia. The findings suggest that targeting a pathway that is essential for these to continue growing could lead to new targeted therapies for some patients.

New Law of Physics Helps Humans and Robots Grasp the Friction of Touch

Still calling 2025 for the debut of a robotic set of human level hands.


Although robotic devices are used in everything from assembly lines to medicine, engineers have a hard time accounting for the friction that occurs when those robots grip objects – particularly in wet environments. Researchers have now discovered a new law of physics that accounts for this type of friction, which should advance a wide range of robotic technologies.

“Our work here opens the door to creating more reliable and functional haptic and robotic devices in applications such as telesurgery and manufacturing,” says Lilian Hsiao, an assistant professor of chemical and biomolecular engineering at North Carolina State University and corresponding author of a paper on the work.

At issue is something called elastohydrodynamic lubrication (EHL) friction, which is the friction that occurs when two solid surfaces come into contact with a thin layer of fluid between them. This would include the friction that occurs when you rub your fingertips together, with the fluid being the thin layer of naturally occurring oil on your skin. But it could also apply to a robotic claw lifting an object that has been coated with oil, or to a surgical device that is being used inside the human body.

/* */