Menu

Blog

Archive for the ‘biotech/medical’ category: Page 1899

Aug 11, 2019

Bioinformatic prediction of critical genes and pathways involved in longevity in Drosophila melanogaster

Posted by in categories: biotech/medical, genetics, life extension

The pursuit of longevity has been the goal of humanity since ancient times. Genetic alterations have been demonstrated to affect lifespan. As increasing numbers of pro-longevity genes and anti-longevity genes have been discovered in Drosophila, screening for functionally important genes among the large number of genes has become difficult. The aim of the present study was to explore critical genes and pathways affecting longevity in Drosophila melanogaster. In this study, 168 genes associated with longevity in D. melanogaster were collected from the Human Ageing Genomic Resources (HAGR) database. Network clustering analysis, network topological analysis, and pathway analysis were integrated to identify key genes and pathways. Quantitative real-time PCR (qRT-PCR) was applied to verify the expression of genes in representative pathways and of predicted genes derived from the gene–gene sub-network. Our results revealed that six key pathways might be associated with longevity, including the longevity-regulating pathway, the peroxisome pathway, the mTOR-signalling pathway, the FOXO-signalling pathway, the AGE-RAGE-signalling pathway in diabetic complications, and the TGF-beta-signalling pathway. Moreover, the results revealed that six key genes in representative pathways, including Cat, Ry, S6k, Sod, Tor, and Tsc1, and the predicted genes Jra, Kay, and Rheb exhibited significant expression changes in ageing D. melanogaster strain w1118 compared to young ones. Overall, our results revealed that six pathways and six key genes might play pivotal roles in regulating longevity, and three interacting genes might be implicated in longevity. The results will not only provide new insight into the mechanisms of longevity, but also provide novel ideas for network-based approaches for longevity-related research.

Aug 11, 2019

Scientists Successfully Turn Breast Cancer Cells Into Fat to Stop Them From Spreading

Posted by in category: biotech/medical

Researchers have been able to coax human breast cancer cells to turn into fat cells in a new proof-of-concept study in mice.

To achieve this feat, the team exploited a weird pathway that metastasising cancer cells have; their results are just a first step, but it’s a truly promising approach.

When you cut your finger, or when a foetus grows organs, the epithelium cells begin to look less like themselves, and more ‘fluid’ – changing into a type of stem cell called a mesenchyme and then reforming into whatever cells the body needs.

Aug 11, 2019

5 Artificial Intelligence Companies to Watch in 2018

Posted by in categories: biotech/medical, food, robotics/AI

Artificial intelligence hit some key milestones in 2017. At Facebook, chatbots were able to negotiate as well as their human counterparts. A poker-playing system designed by Carnegie Mellon professors mopped the floor with live opponents. There were even some potentially life-saving breakthroughs, like the machine vision system that can determine whether a mole is cancerous with more than 90 percent accuracy—beating out a group of dermatologists.

From agriculture to medicine and beyond, plenty of startups are using AI in innovative ways. Here are five companies you should expect big things from in 2018.

SoundHound has been around for 13 years, and has spent that time trying to build the most powerful voice assistant ever. The startup began by creating a Shazam-like song recognition app called Midomi; now, the newly released Hound app is capable of answering complex voice prompts like, “Show me all below-average-priced restaurants within a five-mile radius that are open past 10 p.m. but don’t include Chinese or pizza places,” or “What’s the weather like in the capital of the biggest state in the U.S.?”

Aug 10, 2019

Don’t change your DNA at home, says America’s first CRISPR law

Posted by in categories: bioengineering, biotech/medical, genetics, law

A California “human biohacking” bill calls for warnings on do-it-yourself genetic-engineering kits.

Aug 10, 2019

Three Invaluable Ways AI and Neuroscience Are Driving Each Other Forward

Posted by in categories: biotech/medical, education, finance, neuroscience, robotics/AI, singularity

Singularity University, Singularity Hub, Singularity Summit, SU Labs, Singularity Labs, Exponential Medicine, Exponential Finance and all associated logos and design elements are trademarks and/or service marks of Singularity Education Group.

© 2019 Singularity Education Group. All Rights Reserved.

Singularity University is not a degree granting institution.

Aug 10, 2019

New study in Science: Why humans in Africa fled to the mountains during the last ice age

Posted by in categories: biotech/medical, chemistry, science

People in Ethiopia did not live in low valleys during the last ice age. Instead they lived high up in the inhospitable Bale Mountains. There they had enough water, built tools out of obsidian and relied mainly on giant rodents for nourishment. This discovery was made by an international team of researchers led by Martin Luther University Halle-Wittenberg (MLU) in cooperation with the Universities of Cologne, Bern, Marburg, Addis Ababa and Rostock. In the current issue of “Science”, the researchers provide the first evidence that our African ancestors had already settled in the mountains during the Palaeolithic period, about 45,000 years ago.

At around 4,000 metres above sea level, the Bale Mountains in southern Ethiopia are a rather inhospitable region. There is a low level of oxygen in the air, temperatures fluctuate sharply, and it rains a lot. “Because of these adverse living conditions, it was previously assumed that humans settled in the Afro-Alpine region only very lately and for short periods of time,” says Professor Bruno Glaser, an expert in soil biogeochemistry at MLU. Together with an international team of archaeologists, soil scientists, palaeoecologists, and biologists, he has been able to show that this assumption is incorrect. People had already begun living for long periods of time on the ice-free plateaus of the Bale Mountains about 45,000 years ago during the Middle Pleistocene Epoch. By then the lower valleys were already too dry for survival.

For several years, the research team investigated a rocky outcrop near the settlement of Fincha Habera in the Bale Mountains in southern Ethiopia. During their field campaigns, the scientists found a number of stone artefacts, clay fragments and a glass bead. “We also extracted information from the soil as part of our subproject,” says Glaser. Based on the sediment deposits in the soil, the researchers from Halle were able to carry out extensive biomarker and nutrient analyses as well as radiocarbon dating and thus draw conclusions as to how many people lived in the region and when they lived there. For this work, the scientists also developed a new type of palaeothermometer which could be used to roughly track the weather in the region — including temperature, humidity and precipitation. Such analyses can only be done in natural areas with little contamination, otherwise the soil profile will have changed too much by more recent influences.

Aug 10, 2019

An Interview With Sarah Constantin of Daphnia Labs

Posted by in categories: biotech/medical, life extension

We recently had the opportunity to catch up with Sarah Constantin, one of the founders of the new biotech startup company Daphnia Labs. The company is developing a new platform for the discovery of geroprotective drugs: in vivo phenotypic screens in model organisms. The company plans to use high-resolution video to track Daphnia during its lifespan in order to screen for drugs that might extend healthspan.

Can you tell us a little about the company, its founders, and what motivated you to start this biotech company?

I’d been working for about a year at the Longevity Research Institute, which is a nonprofit that funds aging research. LRI focuses on trying to replicate studies on interventions that have been reported to extend lifespan in mammals. Basically, of the 50+ compounds out there that have some mammalian evidence for an anti-aging effect, which ones have the best chance of being viable geroprotectors in humans?

Aug 10, 2019

The transhumanist: Russian student who lost sight after explosion developing bionic eyes for himself

Posted by in categories: biotech/medical, computing, cyborgs, transhumanism

Evgeny became wider known to the Russian public in March, after becoming one of the first to implant a chip – between his thumb and forefinger – even though such surgical procedures are forbidden in Russia.


He sleeps two hours a night, plays guitar with a custom prosthesis, and has illegally implanted a microchip. When Evgeny Nekrasov was disfigured by an accident at 14, he decided to leverage future technology to build a new life.

Evgeny, now 21, has no recollection of “messing around” after school with his friends in hometown Vladivostok and picking up the gas canister that exploded in his hands and into his face.

Continue reading “The transhumanist: Russian student who lost sight after explosion developing bionic eyes for himself” »

Aug 9, 2019

China approves ethics advisory group after CRISPR-babies scandal

Posted by in categories: bioengineering, biotech/medical, ethics

Bioethicists hope a national committee will help close loopholes in the country’s biomedical ethics regulations.

Aug 9, 2019

P53 Mutations in 10,000 Cancer Patients Shed New Light on Gene’s Function

Posted by in categories: biotech/medical, genetics

HOUSTON — (July 30, 2019) One of the most extensively studied genes in cancer, TP53 is well known for its role as a tumor suppressor. It senses cellular stress or damage, and in response stops cell division or initiates cell death, thereby preventing a damaged cell from reproducing. Mutation of this gene eliminates a key cellular fail-safe mechanism and is a step leading to cancer. Researchers at Baylor College of Medicine have conducted the most comprehensive study of TP53 mutations to better understand the processes leading to the inactivation of this important gene. Their findings, published in the journal Cell Reports, shed light on how the gene becomes mutated and how those mutations can help predict clinical outlook.

The team, led by Dr. Larry Donehower, professor of molecular virology and microbiology at Baylor College of Medicine, studied 10,225 patient samples from 32 different cancers, from The Cancer Genome Atlas, and compared them to another 80,000 mutations in a database collected over three decades by Dr. Thierry Soussi, professor of molecular biology at Sorbonne University. After analyzing this large data sample, they have a more thorough understanding of how the TP53 gene mutation impacts cancer.

The team found that across all cancer types studied, TP53 mutations were more frequent in patients with poorer survival rates. But they also identified a way to more accurately predict prognosis. Donehower said he identified four upregulated genes in mutant TP53 tumors, whose expression correlated to patient outcome.