Toggle light / dark theme

Researchers build artificial chromosome

Biotechnologists at Delft University of Technology have built an artificial chromosome in yeast. The chromosome can exist alongside natural yeast chromosomes, and serves as a platform to safely and easily add new functions to the micro-organism. Researchers can use the artificial chromosome to convert yeast cells into living factories capable of producing useful chemicals and even medicines.

Biotechnologists from all over the world are trying to engineer and other micro-organisms such that they can produce useful substances. To do this, they have to make adjustments to the existing genetic material of the cell. For example, they insert a number of genes into the genome using CRISPR-Cas9, or switch off existing genes, thereby gradually transforming yeast into ‘cell factories’ that produce useful substances.

The disadvantage of this method is that it is not possible to make all the necessary changes at once, but that several rounds of genetic manipulation are needed. This is time-consuming. Additionally, multiple sessions of DNA-tinkering using CRISPR-Cas9 can lead to mutations that disrupt (essential) functions. The result of this could be, for instance, that the metabolism of the cell is disrupted, causing problems with growth and division.

Research Says Alzheimer’s Is Actually 3 Distinct Disease Subtypes

Alzheimer’s Disease (AD) is probably more diverse than our traditional models suggest.

Postmortem, RNA sequencing has revealed three major molecular subtypes of the disease, each of which presents differently in the brain and which holds a unique genetic risk.

Such knowledge could help us predict who is most vulnerable to each subtype, how their disease might progress and what treatments might suit them best, potentially leading to better outcomes.

Researchers develop new one-step process for creating self-assembled metamaterials

A team led by University of Minnesota Twin Cities researchers has discovered a groundbreaking one-step process for creating materials with unique properties, called metamaterials. Their results show the realistic possibility of designing similar self-assembled structures with the potential of creating “built-to-order” nanostructures for wide application in electronics and optical devices.

The research was published and featured on the cover of Nano Letters, a peer-reviewed scientific journal published by the American Chemical Society.

In general, metamaterials are made in the lab so as to provide specific physical, chemical, electrical, and optical properties otherwise impossible to find in naturally occurring materials. These materials can have which make them ideal for a variety of applications from optical filters and medical devices to aircraft soundproofing and infrastructure monitoring. Usually these nano-scale materials are painstakingly produced in a specialized clean room environment over days and weeks in a multi-step fabrication process.

Dr. Tim R. Peterson — Moonshot Thinking For Aging, Mental Health, And Drug Re-Purposing

Moonshot Thinking For Aging, Mental Health, And Drug Re-Purposing — Dr. Tim R. Peterson.

Washington University in St. Louis.


Dr. Tim R. Peterson PhD. is Assistant Professor, in the Department of Medicine, at Washington University in St. Louis.

Dr. Peterson went to the Massachusetts Institutes of Technology (MIT) where he received his doctorate in biology.

Dr. Peterson’s lab is interested in quality of life issues that affect all people, indirectly or directly, and two critical conditions that his lab is especially interested in are aging (specifically research on health span – the healthy period of one’s life) and mental health / mental health equality for all people.

Study links severe COVID-19 disease to short telomeres

Very interesting.


Patients with severe COVID-19 disease have significantly shorter telomeres, according to a study conducted by researchers at the Spanish National Cancer Research Centre (CNIO) in collaboration with the COVID-IFEMA Field Hospital, published in the journal Aging. The study, led by Maria A. Blasco and whose first authors are Raúl Sánchez and Ana Guío-Carrión, postulates that telomere shortening as a consequence of the viral infection impedes tissue regeneration and that this is why a significant number of patients suffer prolonged sequelae.

Blasco was already developing a therapy to regenerate lung tissue in pulmonary fibrosis patients; she now believes that this treatment — which should still take at least a year and a half to become available — could also help those who have lung lesions remaining after overcoming COVID-19.

Telomeres and tissue regeneration

The Telomeres and Telomerase Group, led by Blasco at the CNIO, has been researching the role of telomeres in tissue regeneration for decades. Telomeres are structures that protect the chromosomes within each cell of the organism. It is known that telomere length is an indicator of ageing: each time a cell divides, its telomeres shorten until they can no longer perform their protective function and the cell, which now becomes damaged, stops dividing. Throughout life, cells are constantly dividing to regenerate tissues, and when they stop doing so because the telomeres are too short, the body ages.

NIST publishes a beginner’s guide to DNA origami

In a technique known as DNA origami, researchers fold long strands of DNA over and over again to construct a variety of tiny 3D structures, including miniature biosensors and drug-delivery containers. Pioneered at the California Institute of Technology in 2006, DNA origami has attracted hundreds of new researchers over the past decade, eager to build receptacles and sensors that could detect and treat disease in the human body, assess the environmental impact of pollutants, and assist in a host of other biological applications.

Although the principles of DNA are straightforward, the technique’s tools and methods for designing new structures are not always easy to grasp and have not been well documented. In addition, scientists new to the method have had no single reference they could turn to for the most efficient way of building DNA structures and how to avoid pitfalls that could waste months or even years of research.

That’s why Jacob Majikes and Alex Liddle, researchers at the National Institute of Standards and Technology (NIST) who have studied DNA origami for years, have compiled the first detailed tutorial on the technique. Their comprehensive report provides a step-by-step guide to designing DNA origami nanostructures, using state-of-the-art tools. Majikes and Liddle described their work in the Jan .8 issue of the Journal of Research of the National Institute of Standards and Technology.

Gene Therapies and the Promise of the Fountain of Youth

Gene therapies are opening up possibilities that were once reserved for science fiction.

At Harvard University, Professor of Genetics David Sinclair says he believes it’s possible to unlock the fountain of youth, and gene therapy is the key.

Sinclair spent two years trying to correct the vision of a mouse using gene therapy, and finally succeeded in doing it.

Although these discoveries are encouraging, Sinclair cautions that people set their expectations realistically.

“Many people are eager to use the research for their own health benefit,” he said. “But I’m hoping that the public will realize that it does take a long time and we can’t just jump from a mouse to a human tomorrow.”

Aging researcher Dr. Nir Barzilai is studying clinical trials that use the diabetes drug metformin to directly target aging.

Octopuses, Some Squid Edit RNA Sequences to Adapt to Environment

Octopus and squid make strange evolutionary shortcuts in adaptation. Evolution is an intricate process of change.


By Jonny Lupsha, News Writer

According to Science Alert, species of squid and octopus may yet have some surprises in store for us. “In a surprising twist, scientists discovered that octopuses, along with some squid and cuttlefish species, routinely edit their RNA (ribonucleic acid) sequences to adapt to their environment,” the article said.

“When an organism changes in some fundamental way, it typically starts with a genetic mutation—a change to the DNA. Those genetic changes are then translated into action by DNA’s molecular sidekick, RNA.”

/* */