Toggle light / dark theme

CJD happens when proteins called prions, which form incorrectly, find their way into the brain. Prions have the unfortunate, destructive ability to deform the proteins around them as well. As the prions gradually eat away at neurons, they create sponge-like holes in the brain. This leads to dementia, loss of bodily function, and eventually coma and death.

A new study — published last month in the journal Scientific Reports — looked at national data on people 50 years and older from Japan between the years 2005 and 2014 and found a gradual rise in the country’s CJD cases and deaths. The increase in both was most prominent among those older 70, but the Okayama University scientists behind the research saw a rise of CJD even after the data had been corrected for age.

“Given this trend in aging of population, the disease burden of CJD will continue to increase in severity,” the scientists wrote in their paper. “Our findings thus recommend that policymakers be aware of the importance of CJD and focus on preparing to address the increasing prevalence of dementia.”

A gene therapy that could restore the fading sight of the elderly is being tested on humans for the first time after positive results in blind mice.

It could be used to treat age-related macular degeneration, a common condition that usually first affects people in their 50s and 60s, scientists said.

It involves a one-time injection of a modified virus into the eye. This viral vector is altered to contain a synthetic gene that produces a protein that plays a critical role in the perception of light.

A new Tesla software leak revealed that the automaker is planning to bring a HEPA filter, enabling Tesla’s Bioweapon Defense Mode, to Model Y.

With the Model X and later the Model S, Tesla has started to put massive HEPA-rated air filters inside its vehicles.

The idea is for Tesla to put efforts into developing a more powerful air filtering system in order to not only contribute to the reduction of local air pollution with electric vehicles but also to reduce the direct impact of air pollution on the occupants of its vehicles.

Though its a bit old, and sometimes innacurate or snarky in narration, it’s still the most detailed depiction of the cryonics process — the procedure itself on a real person, the person preserved before dying and her family as they decide to do this, deal with her death, and reflect on it after she’s preserved. It’s quite emotional and sometimes graphic, but well worth watching. Will it work? Maybe. But if you are NOT preserved there is NO chance at all. From your perspective it’d be like waking up right after dying in some distant future without feeling like any time passed at all.

That sounds a hell of a lot more appealing and likely than a bearded man on a fluffy cloud winking at me after I die.


Anita Riskin is one of hundreds of people who believe in cryonics — the process where doctors freeze human bodies. Preserve them, so that some time in the future they can be resuscitated — brought back to life. Now, as Anita Riskin sets out on her amazing journey, for the first time, you’ll see how it’s actually done — at times, quite graphically.

For forty years, 60 Minutes have been telling Australians the world’s greatest stories. Tales that changed history, our nation and our lives. Reporters Liz Hayes, Allison Langdon, Tara Brown, Charles Wooley, Liam Bartlett and Tom Steinfort look past the headlines because there is always a bigger picture. Sundays are for 60 Minutes.

WATCH more of 60 Minutes Australia: https://www.60minutes.com.au

The researchers found that while equol production did not appear to impact levels of amyloid-beta deposited within the brain, it was associated with reduced white matter lesion volumes. Sekikawa’s team also discovered that high levels of isoflavones—soy nutrients that are metabolized into equol—had no effect on levels of white matter lesions or amyloid-beta when equol wasn’t produced.

According to Sekikawa, the ability to produce equol from soy isoflavones may be the key to unlocking protective health benefits from a soy-rich diet, and his team has previously shown that equol production is associated with a lower risk of heart disease. As heart disease is strongly associated with cognitive decline and dementia, equol production could help protect the aging brain as well as the heart.


A metabolite produced following consumption of dietary soy may decrease a key risk factor for dementia—with the help of the right bacteria, according to a new discovery led by researchers at the University of Pittsburgh Graduate School of Public Health.

Their study, published today in the journal Alzheimer’s & Dementia: Translational Research & Clinical Interventions, reports that elderly Japanese men and women who produce equol—a metabolite of dietary soy created by certain types of gut bacteria—display lower levels of white matter lesions within the brain.

“White matter lesions are significant risk factors for cognitive decline, and all-cause mortality,” said lead author Akira Sekikawa, M.D., Ph.D., associate professor of epidemiology at Pitt Public Health. “We found 50% more white matter lesions in people who cannot produce equol compared to people who can produce it, which is a surprisingly huge effect.”

UCLA researchers have identified a compound that can reproduce the effect of exercise in muscle cells in mice. The findings are published in the journal Cell Reports Medicine.

Normally, muscles get stronger as they are used, thanks to a series of chemical signals inside . The newly identified compound activates those signals, which suggests that like it could eventually be used to treat people with limb girdle , a form of adolescent-onset muscular dystrophy.

When muscles aren’t worked regularly, they gradually atrophy. (The phenomenon is familiar to anyone who’s had a cast on their leg for several weeks.) Fortunately, for people with healthy muscles, that deterioration is reversible. Muscle use stimulates chemical messengers inside the muscle cells that increase muscle mass and strength.

For the first time, scientists have created pigs, goats and cattle that can serve as viable “surrogate sires,” male animals that produce sperm carrying only the genetic traits of donor animals.

The advance, published in the Proceedings of the National Academy of Sciences on Sept. 14, could speed the spread of desirable characteristics in livestock and improve food production for a growing global population. It also would enable breeders in remote regions better access to genetic material of elite animals from other parts of the world and allow more precision breeding in animals such as goats where using is difficult.

“With this technology, we can get better dissemination of desirable traits and improve the efficiency of food production. This can have a major impact on addressing food insecurity around the world,” said Jon Oatley, a reproductive biologist with WSU’s College of Veterinary Medicine. “If we can tackle this genetically, then that means less water, less feed and fewer antibiotics we have to put into the animals.”

The human eye does not work like a camera, contrary to common belief. Consider the following key factors:

1) Both the cornea and the lens COMBINE to give the focusing effect. Thus it is TWO lenses, not one that allow human vision. In fact the cornea is responsible for two-thirds or more of the focusing effect. The lens compounds that focusing, projecting it from past the pupil onto the curved retina at the back of the eye.

2) The eye corrects for CHROMATIC ABERATION by having a central pit, the FOVEA, where the blue cells are concentrated along the outer rim and the red cells concentrated in the center. Blue light focusses slightly closer to an objective lens and red light slightly further. Thus the red cells are concentrated further back, at the base of the pit, so that the human eye has a natural color correction without the need for complex color corrected lenses.

3) The retina is a curved “screen” at the back of the eye, allowing human vision to encompass an entire hemisphere of 180 degrees in the forwards direction. The retina is mostly rod cells except for at the central fovea, for seeing light but not color and detail, which is why it is easier to see faint objects through a telescope by using what astronomers call “averted vision,” not looking straight at it.

There are thus several factors in trying to use metamaterial lenses to create retinal projection, including:

1) Since the cornea is curved, a tailored curved contact metalens, instead of a flat metalens is ideal.

2) That lens must be able to project a wide-angled view through the lens of the eye, in such a way that the lens distributes the image widely onto the curved retinal screen.

3) If using a third exterior projection system onto that metalens, as with a pair of glasses, googles, or another metalens on top of the first one, it will be a four-lens projection system: projector metalens, contact metalens, human cornea lens, human eye lens. These elements will have to be coordinated into a single system with the final effect.