Toggle light / dark theme

Is the Director General of the Pacific Community (SPC — https://www.spc.int/about-us/director-general) which is the largest intergovernmental organization in the Pacific and serves as a science and technology for development organization owned by the 26 Member countries and territories in the Pacific region.

SPC’s 650 member staff deliver services and scientific advice to the Pacific across the domains of Oceans, Islands and People, and has deep expertise in food security, water resources, fisheries, disasters, energy, maritime, health, statistics, education, human rights, social development and natural resources.

Dr. Minchin previously served as the Chief of the Environmental Geoscience Division of Geoscience Australia, and has an extensive background in the management and modelling of environmental data and the online delivery of data, modelling and reporting tools for improved natural resource management. He has a long track record of conceiving, developing and delivering transformational and innovative projects in the Environmental and Natural Resource Management domains.

Dr. Minchin has represented Australia in key international forums and was Australia’s Principal Delegate to both the UN Global Geospatial Information Management Group of Experts (UNGGIM) and the Intergovernmental Group on Earth Observations (GEO).

Researchers from Carnegie Mellon University and the Chinese University of Hong Kong have developed a strategy for creating ultrahigh-resolution, complex 3D nanostructures out of various materials.

Carnegie Mellon University’s Yongxin (Leon) Zhao and the Chinese University of Hong Kong’s Shih-Chi Chen have a big idea for manufacturing nanodevices.

Zhao’s Biophotonics Lab develops novel techniques to study biological and pathological processes in cells and tissues. Through a process called , the lab works to advance techniques to proportionally enlarge microscopic samples embedded in a hydrogel, allowing researchers to be able to view fine details without upgrading their microscopes.

Support us! https://www.patreon.com/mlst.

Irina Rish is a world-renowned professor of computer science and operations research at the Université de Montréal and a core member of the prestigious Mila organisation. She is a Canada CIFAR AI Chair and the Canadian Excellence Research Chair in Autonomous AI. Irina holds an MSc and PhD in AI from the University of California, Irvine as well as an MSc in Applied Mathematics from the Moscow Gubkin Institute. Her research focuses on machine learning, neural data analysis, and neuroscience-inspired AI. In particular, she is exploring continual lifelong learning, optimization algorithms for deep neural networks, sparse modelling and probabilistic inference, dialog generation, biologically plausible reinforcement learning, and dynamical systems approaches to brain imaging analysis. Prof. Rish holds 64 patents, has published over 80 research papers, several book chapters, three edited books, and a monograph on Sparse Modelling. She has served as a Senior Area Chair for NeurIPS and ICML. Irina’s research is focussed on taking us closer to the holy grail of Artificial General Intelligence. She continues to push the boundaries of machine learning, continually striving to make advancements in neuroscience-inspired AI.

In a conversation about artificial intelligence (AI), Irina and Tim discussed the idea of transhumanism and the potential for AI to improve human flourishing. Irina suggested that instead of looking at AI as something to be controlled and regulated, people should view it as a tool to augment human capabilities. She argued that attempting to create an AI that is smarter than humans is not the best approach, and that a hybrid of human and AI intelligence is much more beneficial. As an example, she mentioned how technology can be used as an extension of the human mind, to track mental states and improve self-understanding. Ultimately, Irina concluded that transhumanism is about having a symbiotic relationship with technology, which can have a positive effect on both parties.

Tim then discussed the contrasting types of intelligence and how this could lead to something interesting emerging from the combination. He brought up the Trolley Problem and how difficult moral quandaries could be programmed into an AI. Irina then referenced The Garden of Forking Paths, a story which explores the idea of how different paths in life can be taken and how decisions from the past can have an effect on the present.

Tardigrades have competition in the realm of microscopic and incredibly sturdy beasties. Like tardigrades, Bdelloid rotifers can also survive drying, freezing, starving, and even low-oxygen conditions. Now, scientists report that they revived some of these rotifers after having been frozen in Siberian permafrost for at least 24,000 years.

The incredible observations are reported in the journal Current Biology. The researchers took samples of permafrost about 3.5 meters (11.5 feet) deep and slowly warmed the sample, which led to the resurrection of several microscopic organisms including these tiny little animals.

“Our report is the hardest proof as of today that multicellular animals could withstand tens of thousands of years in cryptobiosis, the state of almost completely arrested metabolism,” co-author Stas Malavin of the Soil Cryology Laboratory at the Institute of Physicochemical and Biological Problems in Soil Science in Pushchino, Russia, said in a statement.

To learn to socialize, zebrafish need to trust their gut.

Gut microbes encourage specialized cells to prune back extra connections in brain circuits that control social behavior, new University of Oregon research in zebrafish shows. The pruning is essential for the development of normal social behavior.

The researchers also found that these ‘social’ neurons are similar in zebrafish and mice. That suggests the findings might translate between species — and could possibly point the way to treatments for a range of neurodevelopmental conditions.

Alpha Centauri, here we come.


However, while technology has indeed advanced a long way since the 1940s, it still seems like we are still a long way from having a fully functional von Neumann machine. That is unless you turn to biology. Even simple biological systems can perform absolutely mind-blowing feats of chemical synthesis. And there are few people in the world today who know that better than George Church. The geneticist from Harvard has been at the forefront of a revolution in the biological sciences over the last 30 years. Now, he’s published a new paper in Astrobiology musing about how biology could aid in creating a pico-scale system that could potentially explore other star systems at next to no cost.

“Pico-scale” in this context means weighing on the order of one pico-gram. Since the smallest operational satellite ever created so far weighed a mere 33 grams, scaling that down to 10–12 times that size might sound ambitious. But that’s precisely what biological systems could potentially do.

MIT neuroscientists have published a key new insight on how working memory functions, in a study published in PLOS Computational Biology.

The researchers at The Picower Institute for Learning and Memory compared measurements of brain cell activity in an animal performing a working memory task with the output of various computer models representing two theories on the underlying mechanism for holding information in mind.

The results favored the newer theory that a network of neurons stores information by making short-lived changes in the connections, or synapses, between them, rather than the traditional theory that memory is maintained by neurons remaining persistently active.

At first, Professor Wolf Reik couldn’t quite believe the data. The experiment had involved an attempt to “rejuvenate” skin cells taken from a 53-year-old volunteer.

The results were better than anybody had expected: having been bathed in a cocktail of proteins, the cells now looked and behaved like those from somebody in their early twenties.

As different measurements of “biological age” confirmed the findings, the molecular biologist’s scepticism gave way to excitement. “I was falling off my chair three times over,” Reik said.