Menu

Blog

Archive for the ‘biological’ category: Page 28

Jan 23, 2024

Daniel Dennett — Information & Artificial Intelligence

Posted by in categories: biological, robotics/AI

Is an American philosopher, writer, and cognitive scientist whose research centers on the philosophy of mind, philosophy of science, and philosophy of biology, particularly as those fields relate to evolutionary biology and cognitive science.

Recorded, Nov 22, 2017.

Jan 22, 2024

Unlocking the Secrets of Love — Neuroscientists Have Identified the “Chemical Imprint of Desire”

Posted by in categories: biological, chemistry, neuroscience

When you get in the car to see your significant other for dinner, your brain’s reward center is likely flooded with dopamine, a hormone also associated with cravings for sugar, nicotine, and cocaine. This rush of dopamine motivates you to navigate through traffic to maintain that special connection. However, if the dinner is with just a work colleague, this intense flood of dopamine may be reduced to a mere trickle, according to recent research conducted by neuroscientists at the University of Colorado Boulder.

“What we have found, essentially, is a biological signature of desire that helps us explain why we want to be with some people more than other people,” said senior author Zoe Donaldson, associate professor of behavioral neuroscience at CU Boulder.

Jan 21, 2024

Ancient Power Unlocked: Scientists Discover 2.5 Billion-Year-Old Bacterial Energy Source

Posted by in categories: biological, chemistry

Biologists from Konstanz have unveiled a unique and ancient phosphorus-based bacterial metabolism. Central to this discovery are four elements: an analytical calculation dating back to the 1980s, a modern sewage treatment facility, the identification of a novel bacterial species, and a remnant from around 2.5 billion years ago.

Our story begins at the end of the 1980s, with a sheet of paper. On this sheet, a scientist calculated that the conversion of the chemical compound phosphite to phosphate would release enough energy to produce the cell’s energy carrier – the ATP molecule. In this way, it should therefore be possible for a microorganism to supply itself with energy. Unlike most living organisms on our planet, this organism would not be dependent on energy supply from light or from the decomposition of organic matter.

The scientist actually succeeded in isolating such a microorganism from the environment. Its energy metabolism is based on the oxidation of phosphite to phosphate, just as predicted by the calculation. But how exactly does the biochemical mechanism work? Regrettably, the key enzyme needed to understand the biochemistry behind the process remained hidden – and thus the mystery remained unsolved for many years. In the following three decades, the sheet stayed in the drawer, the research approach was put on the back burner. Yet the scientist couldn’t get the thought out of his head.

Jan 19, 2024

“Dirt-powered fuel cell” draws near-limitless energy from soil

Posted by in categories: biological, chemistry

A Northwestern University team has demonstrated a remarkable new way to generate electricity, with a paperback-sized device that nestles in soil and harvests power created as microbes break down dirt – for as long as there’s carbon in the soil.

Microbial fuel cells, as they’re called, have been around for more than 100 years. They work a little like a battery, with an anode, cathode and electrolyte – but rather than drawing electricity from chemical sources, they work with bacteria that naturally donate electrons to nearby conductors as they chow down on soil.

The issue thus far has been keeping them supplied with water and oxygen, while being buried in the dirt. “Although MFCs have existed as a concept for more than a century, their unreliable performance and low output power have stymied efforts to make practical use of them, especially in low-moisture conditions,” said UNW alumnus and project lead Bill Yen.

Jan 19, 2024

Ultimate Computing: Biomolecular Consciousness and NanoTechnology

Posted by in categories: biological, chemistry, computing, engineering, mathematics, nanotechnology, neuroscience, physics

The possibility of direct interfacing between biological and technological information devices could result in a merger of mind and machine — Ultimate Computing. This book, a thorough consideration of this idea, involves a number of disciplines, including biochemistry, cognitive science, computer science, engineering, mathematics, microbiology, molecular biology, pharmacology, philosophy, physics, physiology, and psychology.

Jan 19, 2024

Ion-tunable antiambipolarity in mixed ion–electron conducting polymers enables biorealistic organic electrochemical neurons

Posted by in categories: biological, chemistry, neuroscience

Silicon-based complementary metal-oxide semiconductors or negative differential resistance device circuits can emulate neural features, yet are complicated to fabricate and not biocompatible. Here, the authors report an ion-modulated antiambipolarity in mixed ion–electron conducting polymers demonstrating capability of sensing, spiking, emulating the most critical biological neural features, and stimulating biological nerves in vivo.

Jan 18, 2024

Scientists Discover New Sense of Bottlenose Dolphins: They Feel Electricity

Posted by in category: biological

Born tail first, bottlenose dolphin calves are initially adorned with two delicate rows of whiskers along their snout, resembling the tactile whiskers of seals. However, these whiskers are shed shortly after birth, leaving behind a pattern of indentations called vibrissal pits. Recently, Tim Hüttner and Guido Dehnhardt, researchers from the University of Rostock in Germany, began to suspect that these pits might serve a purpose beyond being mere remnants.

Could they allow adult bottlenose dolphins to sense weak electric fields? Taking an initial close look, they realized that the remnant pits resemble the structures that allow sharks to detect electric fields, and when they checked whether captive bottlenose dolphins could sense an electric field in water, all of the animals felt the field.

‘It was very impressive to see,’ says Dehnhardt, who recently published the extraordinary discovery and how the animals could use their electric sense in the Journal of Experimental Biology.

Jan 18, 2024

The Iron-60 Enigma: Decoding Cosmic Explosions on Earth

Posted by in categories: biological, climatology, particle physics, space

When large stars or celestial bodies explode near Earth, their debris can reach our solar system. Evidence of these cosmic events is found on Earth and the Moon, detectable through accelerator mass spectrometry (AMS). An overview of this exciting research was recently published in the scientific journal Annual Review of Nuclear and Particle Science by Prof. Anton Wallner of the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), who soon plans to decisively advance this promising branch of research with the new, ultrasensitive AMS facility “HAMSTER.”

In their paper, HZDR physicist Anton Wallner and colleague Prof. Brian D. Fields from the University of Illinois in Urbana, USA, provide an overview of near-Earth cosmic explosions with a particular focus on events that occurred three and, respectively, seven million years ago.

“Fortunately, these events were still far enough away, so they probably did not significantly impact the Earth’s climate or have major effects on the biosphere. However, things get really uncomfortable when cosmic explosions occur at a distance of 30 light-years or less,” Wallner explains. Converted into the astrophysical unit parsec, this corresponds to less than eight to ten parsecs.

Jan 18, 2024

Neural Connectivity: A Universal Network Phenomenon

Posted by in categories: biological, neuroscience, physics

Summary: A groundbreaking study by physicists and neuroscientists reveals that the connectivity among neurons stems from universal networking principles, not just biological specifics.

Analyzing various model organisms, researchers found a consistent “heavy-tailed” distribution of neural connections, guided by Hebbian dynamics, indicating that neuron connectivity relies on general network organization.

This discovery, transcending biology, potentially applies to non-biological networks like social interactions, offering insights into the fundamental nature of networking.

Jan 17, 2024

Minds in Machines: Comparing Biological and Synthetic Intelligence

Posted by in categories: biological, neuroscience, robotics/AI

The incredible explosion in the power of artificial intelligence is evident in daily headlines proclaiming big breakthroughs. What are the remaining differences between machine and human intelligence? Could we simulate a brain on current computer hardware if we could write the software? What are the latest advancements in the world’s largest brain model? Participate in the discussion about what AI has done and how far it has yet to go, while discovering new technologies that might allow it to get there.

ABOUT THE SPEAKERS

Continue reading “Minds in Machines: Comparing Biological and Synthetic Intelligence” »

Page 28 of 217First2526272829303132Last