Menu

Blog

Archive for the ‘biological’ category: Page 145

Jun 4, 2020

New biosensor visualizes stress in living plant cells in real time

Posted by in categories: biological, climatology

Plant biologists have long sought a deeper understanding of foundational processes involving kinases, enzymes that catalyze key biological activities in proteins. Analyzing the processes underlying kinases in plants takes on greater urgency in today’s environment increasingly altered by climate warming.

Certain “SnRK2” kinases (sucrose-non-fermenting-1-related protein -2s) are essential since they are known to be activated in response to , triggering the protective closure of small pores on leaf surfaces known as stoma. These pores allow carbon dioxide to enter leaves, but also lose more than 90 percent of their water by evaporation through them. Pore opening and closing functions help optimize growth and drought tolerance in response to changes in the environment.

Now, plant biologists at the University of California San Diego have developed a new nanosensor that allows researchers to monitor SnRK2 protein kinase activity in live plant cells. The SnRK2 activity sensor, or “SNACS,” is described in the journal eLife.

Jun 1, 2020

Predictive biology: modelling, understanding and harnessing microbial complexity

Posted by in categories: biological, engineering, physics

Predictive biology is the next great chapter in synthetic and systems biology, particularly for microorganisms. Tasks that once seemed infeasible are increasingly being realized such as designing and implementing intricate synthetic gene circuits that perform complex sensing and actuation functions, and assembling multi-species bacterial communities with specific, predefined compositions. These achievements have been made possible by the integration of diverse expertise across biology, physics and engineering, resulting in an emerging, quantitative understanding of biological design. As ever-expanding multi-omic data sets become available, their potential utility in transforming theory into practice remains firmly rooted in the underlying quantitative principles that govern biological systems. In this Review, we discuss key areas of predictive biology that are of growing interest to microbiology, the challenges associated with the innate complexity of microorganisms and the value of quantitative methods in making microbiology more predictable.

May 31, 2020

AI Startup Combines Mouse Neurons With Silicon Chips To Make Computers Smarter, Faster

Posted by in categories: biological, robotics/AI

There aren’t many computer chips that you have to build a life support system for.

But when you’re combining actual living brain cells with inorganic silicon chips, you can’t feed them just electricity. You actually need to supply everything they would normally get in a fully biological body.

Why bother?

May 29, 2020

Why Artificial Brains Need Sleep

Posted by in categories: biological, robotics/AI

Like biological brains, artificial neural networks may depend on slow-wave sleep for learning.

May 27, 2020

Novel insight reveals topological tangle in unexpected corner of the universe

Posted by in categories: biological, computing, cosmology, mathematics, nanotechnology, particle physics

Just as a literature buff might explore a novel for recurring themes, physicists and mathematicians search for repeating structures present throughout nature.

For example, a certain geometrical structure of knots, which scientists call a Hopfion, manifests itself in unexpected corners of the universe, ranging from , to biology, to cosmology. Like the Fibonacci spiral and the golden ratio, the Hopfion pattern unites different scientific fields, and deeper understanding of its structure and influence will help scientists to develop transformative technologies.

Continue reading “Novel insight reveals topological tangle in unexpected corner of the universe” »

May 26, 2020

Plant-based metal and metal alloy nanoparticle synthesis: a comprehensive mechanistic approach

Posted by in categories: biological, chemistry, nanotechnology

Circa 2019 o.o


There are enormous methods such as physical, chemical, and biological, for the synthesis of metallic nanoparticles (MNPs), which has become a matter of focus among material scientists. Green chemistry-based MNP synthesis is an area, which has gained much importance presently due to their non-toxicity and monodispersed nanoparticle preparation methodologies. Among green synthesis methods, plants are considered as efficient candidates for nanoparticle synthesis. The meticulous formation of different sizes and shapes of the nanoparticles using plants has spurred encouraging interest. The rate kinetics and stability of nanoparticle synthesis are well studied as well as appreciated in the arena of materials. Their capability to sequester metal ions and fastidiously define the dimensions using a plethora of capping proteins such as glutathione and phytochelatins is intriguing giving it a monodispersed size. This review is a comprehensive understanding of the metal nanoparticles synthesized by plants and apprehends the mechanism of nanoparticle synthesis exhaustively.

May 26, 2020

Exclusive: Machine Learning Company Insitro Raises $143 Million To Bridge Biology And AI

Posted by in categories: biological, robotics/AI

The company’s series B funding round was led by inventors at Andreessen Horowitz and includes new investor Casdin Capital.

May 25, 2020

Dr. Michael R. Rose presents “Biological Immortality is REAL”

Posted by in categories: biological, education, evolution, life extension

Dr. Michael R. Rose is Professor at Department of Ecology and Evolutionary Biology at University Of California, Irvine. His main area of work has been the evolution of aging.
“Our task is to make nature, the blind force of nature, into an instrument of universal resuscitation and to become a union of immortal beings.“
- Nikolai F. Fedorov

We hold faith in the technologies & discoveries of humanity to END AGING and Defeat involuntary Death within our lifetime.

Continue reading “Dr. Michael R. Rose presents ‘Biological Immortality is REAL’” »

May 25, 2020

Sir Julian Huxley

Posted by in categories: biological, evolution, transhumanism

Transhumanism is a form of “Humanism” (atheism or naturalism). The word and concept was coined by Julian Huxley back in the day. I was a student of A.J. Ayer who suceeded Huxley as head of British Humanism. https://humanism.org.uk/humanism/the-humanist-tradition/20th…an-huxley/ We must nowadays include “Christian Transhumanism” and tolerate all religions and superstitions (however daft), without right to criticise such “Holy” sanctified cows. And so the posthuman goddesses and gods 😉 have decreed it is a good idea to make MVT, FM-2030 and post/ “humanist” ideas available tor current religious self-IDers, I have kicked things off with Posthuman Buddhism https://www.facebook.com/groups/posthumanbuddhism/ and Posthuman Christianity https://www.facebook.com/groups/2164360640528843/

Perhaps we can update and reform such bastions of anachronism and conventionalism with the light of (actual, not gospel) truth?


Julian Huxley was the grandson of T H Huxley (staunch supporter of Charles Darwin and creator of the term “agnostic”). He continued his grandfather’s valuable work – in 1927, he joined H G Wells and his son in producing a comprehensive book called The Science of Life, which helped to spread a general understanding of evolution and to promote Biology in the school curriculum. He believed that the study of evolution could help us to understand our own nature and behaviour. He was a professor at King’s College, London, and a pioneer in the study of animal behaviour (ethology) and conservation.

Continue reading “Sir Julian Huxley” »

May 25, 2020

Nanoscale Acoustic Force Field Technology Developed That Isolates Submicron Particles

Posted by in categories: biological, nanotechnology, particle physics, robotics/AI

Acoustofluidics is the fusion of acoustics and fluid mechanics which provides a contact-free, rapid and effective manipulation of fluids and suspended particles. The applied acoustic wave can produce a non-zero time-averaged pressure field to exert an acoustic radiation force on particles suspended in a microfluidic channel. However, for particles below a critical size the viscous drag force dominates over the acoustic radiation forces due to the strong acoustic streaming resulting from the acoustic energy dissipation in the fluid. Thus, particle size acts as a key limiting factor in the use of acoustic fields for manipulation and sorting applications that would otherwise be useful in fields including sensing (plasmonic nanoparticles), biology (small bioparticle enrichment) and optics (micro-lenses).

Although acoustic nanoparticle manipulation has been demonstrated, terahertz (THz) or gigahertz (GHz) frequencies are usually required to create nanoscale wavelengths, in which the fabrication of very small feature sizes of SAW transducers is challenging. In addition, single nanoparticle positioning into discrete traps has not been demonstrated in nanoacoustic fields. Hence, there is a pressing need to develop a fast, precise and scalable method for individual nano- and submicron scale manipulation in acoustic fields using megahertz (MHz) frequencies.

An interdisciplinary research team led by Associate Professor Ye Ai from Singapore University of Technology and Design (SUTD) and Dr. David Collins from University of Melbourne, in collaboration with Professor Jongyoon Han from MIT and Associate Professor Hong Yee Low from SUTD, developed a novel acoustofluidic technology for massively multiplexed submicron particle trapping within nanocavities at the single-particle level.