Archive for the ‘biological’ category: Page 129
Jan 23, 2021
Scientists produce the first in-vitro embryos from vitrified African lion oocytes
Posted by Quinn Sena in categories: biological, cryonics, existential risks, life extension
A team of scientists from the Leibniz Institute for Zoo and Wildlife Research (Leibniz-IZW) inGermany, Givskud Zoo–Zootopia in Denmark and the University of Milan in Italy succeeded in producing the very first African lionin-vitroembryos after the vitrification of immature oocytes. For this specific method of cryopreservation, oocytes are collected directly after an animal is castrated or deceased and immediately frozen at-196°C in liquid nitrogen. This technique allows the storage of oocytes of valuable animals for an unlimited time, so that they can be used to produce offspring with the help of assisted reproduction techniques. The aim is to further improve and apply these methods to save highly endangered species such as the Asiatic lion from extinction. The current research on African lions as a model species is an important step in this direction. The results are reported in the scientific journal Cryobiology.
Lion oocytes are presumed to be very sensitive to chilling due to their high lipid content, resulting in poor revival following slow cooling. Vitrification can circumvent this problem, as the cells are frozen at ultra-fast speeds in solutions with a very high concentration of cryoprotective agents. This method prevents the formation of ice crystals in the cells, which could destroy them, and enables them to remain intact for an unlimited time to allow their use later on.
For the present research, the scientists collected oocytes from four African lionesses from Givskud Zoo—Zootopia after the animals had been euthanised for the purpose of population management. Half of the oocytes (60) were vitrified instantly. After six days of storage in liquid nitrogen, the vitrified oocytes were thawed and subjected toin-vitromaturation in an incubator at 39°C for a total of 32–34 hours. The other half (59) were used as control group and directly subjected toin-vitromaturation without a step of vitrification. Mature oocytes of both groups were then fertilized with frozen-thawed sperm from African lion males. “We could demonstrate a high proportion of surviving and matured oocytes in the group of vitrified oocytes. Almost 50% of them had matured, a proportion similar to that in the control group,” says Jennifer Zahmel, scientist at the Department of Reproduction Biology at the Leibniz-IZW.
Jan 23, 2021
How Explainable Artificial Intelligence Can Help Humans Innovate
Posted by Raphael Ramos in categories: biological, chemistry, information science, particle physics, robotics/AI, transportation
I like this idea. I don’t want AI to be a black box, I want to know what’s happening and how its doing it.
The field of artificial intelligence has created computers that can drive cars, synthesize chemical compounds, fold proteins, and detect high-energy particles at a superhuman level.
However, these AI algorithms cannot explain the thought processes behind their decisions. A computer that masters protein folding and also tells researchers more about the rules of biology is much more useful than a computer that folds proteins without explanation.
Continue reading “How Explainable Artificial Intelligence Can Help Humans Innovate” »
Jan 21, 2021
Discovery of new praying mantis species from the time of the dinosaurs
Posted by Quinn Sena in categories: biological, evolution
A McGill-led research team has identified a new species of praying mantis thanks to imprints of its fossilized wings. It lived in Labrador, in the Canadian Subarctic around 100 million years ago, during the time of the dinosaurs, in the Late Cretaceous period. The researchers believe that the fossils of the new genus and species, Labradormantis guilbaulti, helps to establish evolutionary relationships between previously known species and advances the scientific understanding of the evolution of the most ‘primitive’ modern praying mantises. The unusual find, described in a recently published study in Systematic Entomology, also sheds light on wing evolution among mantises and their relatives more generally.
Digging through mountains of rubble
The research team, which included members from the Muséum national d’Histoire naturelle in Paris, and the Musée de paléontologie et de l’évolution in Montreal, found the specimens during fieldwork at an abandoned iron mine located in Labrador, near Schefferville (Quebec).
Jan 20, 2021
Ten computer codes that transformed science
Posted by Derick Lee in categories: biological, climatology, computing, physics, science
Although no list like this can be definitive, we polled dozens of researchers over the past year to develop a diverse line-up of ten software tools that have had a big impact on the world of science. You can weigh in on our choices at the end of the story.
From Fortran to arXiv.org, these advances in programming and platforms sent biology, climate science and physics into warp speed.
Jan 18, 2021
20 Best Aging Biomarkers to Track for Longevity
Posted by J.P. Medved in categories: biological, life extension
I’m curious what biomarkers people here currently track? I did some research and came up with these 20 but any you would add/take away? (9 of them were mostly included to be able to use Morgan Levine’s biological age calculator).
This is the first article in a two-part series on the best aging biomarkers to track for longevity. The second article will compare different tests and testing companies on the market and supply a sample testing schedule you can use.
Continue reading “20 Best Aging Biomarkers to Track for Longevity” »
Jan 16, 2021
Human Mind Control of Rat Cyborg’s Continuous Locomotion with Wireless Brain-to-Brain Interface
Posted by Brent Ellman in categories: biological, computing, cyborgs, neuroscience
“The results showed that rat cyborgs could be smoothly and successfully navigated by the human mind to complete a navigation task in a complex maze. Our experiments indicated that the cooperation through transmitting multidimensional information between two brains by computer-assisted BBI is promising.”
(2019)
Brain-machine interfaces (BMIs) provide a promising information channel between the biological brain and external devices and are applied in building brain-to-device control. Prior studies have explored the feasibility of establishing a brain-brain interface (BBI) across various brains via the combination of BMIs. However, using BBI to realize the efficient multidegree control of a living creature, such as a rat, to complete a navigation task in a complex environment has yet to be shown. In this study, we developed a BBI from the human brain to a rat implanted with microelectrodes (i.e., rat cyborg), which integrated electroencephalogram-based motor imagery and brain stimulation to realize human mind control of the rat’s continuous locomotion. Control instructions were transferred from continuous motor imagery decoding results with the proposed control models and were wirelessly sent to the rat cyborg through brain micro-electrical stimulation. The results showed that rat cyborgs could be smoothly and successfully navigated by the human mind to complete a navigation task in a complex maze. Our experiments indicated that the cooperation through transmitting multidimensional information between two brains by computer-assisted BBI is promising.
Jan 15, 2021
Elon Musk: Are We Living in a Simulation?
Posted by TJ Wass in categories: biological, Elon Musk
Among popular public thinkers advocating for the simulation hypothesis is Elon Musk who stated: if you assume any rate of improvement at all, games will eventually be indistinguishable from reality “before concluding ” that its most likely we’re in a simulation.
Elon Musk is known in the philosophical community to make “outrageous” claims, whether its about the advent of digital superintelligence, or in this case, according to some skeptics of the simulation hypothesis, Elon Musk exaggerates the probability that we might be living in a simulation.
Continue reading “Elon Musk: Are We Living in a Simulation?” »
Jan 14, 2021
Inspired by kombucha tea, engineers create ‘living materials’
Posted by Saúl Morales Rodriguéz in categories: biological, sustainability
Engineers at MIT and Imperial College London have developed a new way to generate tough, functional materials using a mixture of bacteria and yeast similar to the “kombucha mother” used to ferment tea.
Using this mixture, also called a SCOBY (symbiotic culture of bacteria and yeast), the researchers were able to produce cellulose embedded with enzymes that can perform a variety of functions, such as sensing environmental pollutants. They also showed that they could incorporate yeast directly into the material, creating “living materials” that could be used to purify water or to make “smart” packaging materials that can detect damage.
“We foresee a future where diverse materials could be grown at home or in local production facilities, using biology rather than resource-intensive centralized manufacturing,” says Timothy Lu, an MIT associate professor of electrical engineering and computer science and of biological engineering.
Jan 13, 2021
Artificial Flesh
Posted by Harry J. Bentham in categories: biological, biotech/medical, ethics, food, futurism, health, innovation, science, sustainability
Review: Meat Planet (2019) by Benjamin Aldes Wurgaft
In the words of the book’s author, Benjamin Aldes Wurgaft, Meat Planet: Artificial Flesh and the Future of Food (2019) is “not an attempt at prediction but rather a study of cultured meat as a special case of speculation on the future of food, and as a lens through which to view the predictions we make about how technology changes the world.” While not serving as some crystal ball to tell us the future of food, Wurgaft’s book certainly does serve as a kind of lens.
Our very appetites are questioned quite a bit in the book. Wondering about the ever-changing history of food, the author asks, “Will it be an effort to reproduce the industrial meat forms we know, albeit on a novel, and more ethical and sustainable, foundation?” Questioning why hamburgers are automatically the default goal, he points out cultured meat advocates should carefully consider “the question of which human appetite for meat, in historical terms, they wish to satisfy.”
Wurgaft’s question of “which human appetite” – past, present, or future – is an excellent one. If we use his book as a lens to observe other emerging technologies, the question extends well beyond our choices of food. It could even have direct implications for such endeavours as radical life extension. Will we, if we extend our lifetimes, be satisfactory to future people? We already know the kind of clash that persists between different generations, and the blame we often place on previous generations for current social ills, without there also being a group of people who simply refuse to die. We should be wary of basing our future on the present – of attempting to preserve present tastes as somehow immutable and deserving immortality. This may be a problem such futurists as Ray Kurzweil, author of The Singularity is Near (2005) need to respond to.
If we are to justify the singularity at which we or our appetites are immortalized, we should remember technology changes “morality’s horizon”, as Wurgaft observes. If, for example, a new technology arises that can entirely eliminate suffering, our choice to allow suffering is an immoral one. If further technologies then emerge that can eliminate not just suffering but death, it will become immoral on that day to permit someone’s natural death – at least to the extent it is like the crime of manslaughter. I argued in my own book that it will be immoral to withhold novel biotechnologies from impoverished countries, if we know such direct action will increase their economic independence or improve their health. Put simply, our inaction in a situation can become an immoral deed if we have the necessary tools to stop suffering.