Toggle light / dark theme

The Potential of CRISPR/Cas9 Gene Editing as a Treatment Strategy for Alzheimer’s Disease

Despite a wealth of knowledge gained in the past three decades concerning the molecular underpinnings of Alzheimer’s disease (AD), progress towards obtaining effective, disease modifying therapies has proven to be challenging. In this manner, numerous clinical trials targeting the production, aggregation, and toxicity of beta-amyloid, have failed to meet efficacy standards. This puts into question the beta-amyloid hypothesis and suggests that additional treatment strategies should be explored. The recent emergence of CRISPR/Cas9 gene editing as a relatively straightforward, inexpensive, and precise system has led to an increased interest of applying this technique in AD. CRISPR/Cas9 gene editing can be used as a direct treatment approach or to help establish better animal models that more faithfully mimic human neurodegenerative diseases. In this manner, this technique has already shown promise in other neurological disorders, such as Huntington’s disease. The purpose of this review is to examine the potential utility of CRISPR/Cas9 as a treatment option for AD by targeting specific genes including those that cause early-onset AD, as well as those that are significant risk factors for late-onset AD such as the apolipoprotein E4 (APOE4) gene.

Keywords: Alzheimer’s disease, CRISPR/Cas9, Gene editing, Treatment, Huntington’s disease, iPSC neurons.

Alzheimer’s Disease (AD) is a progressive and fatal neurodegenerative disorder that primarily affects older adults and is the most common cause of dementia [1]. Currently it afflicts 5.5 million Americans and that number is expected to triple by 2050. At the present time, it is the third leading cause of death behind heart disease and cancer, with an estimated 700,000 Americans ages65 years will have AD when they die [2]. In addition, the cost of the disease is substantial with $259 billion health care dollars going to manage the disease currently, and by the middle of the century costs are predicted to soar over $1.2 trillion, which will completely bankrupt the healthcare system in the USA [3]. Worldwide, 47 million people live with dementia and that number is projected to increase to more than 131 million by 2050 with an estimated worldwide cost of US $818 billion [4].

Janice Chen, Nathan Chen’s sister, is building a $100 billion CRISPR gene editing company

Janice Chen, Ph.D., one of Olympic gold medalist Nathan Chen’s siblings, is on a mission to build a $100 billion biotech company.

In 2018, she co-founded Mammoth Biosciences with Trevor Martin, Lucas Harrington and Jennifer Doudna 0, who won the Nobel Prize in Chemistry two years later for her pioneering work in CRISPR gene editing. Doudna also served as Chen’s mentor while she pursued her doctorate degree in molecular and cell biology at the University of California at Berkeley.

Mammoth is built on Chen’s work as a graduate student researcher in Doudna’s lab. Since the dawn of COVID-19 in 2020, the startup has seen accelerated growth as it snagged $100 million in multiple contracts and government grants.

You’re invited to join our subreddit community —

R/IntelligenceSupernova — dedicated to techno-optimists, singularitarians, transhumanist thinkers, cosmists, futurists, AI researchers, cyberneticists, crypto enthusiasts, VR creators, artists, philosophers of mind. Accelerating now towards the Cybernetic Singularity with unprecedented advances in AI & Cybernetics, VR, Biotechnology, Nanotechnology, Bionics, Genetic Engineering, Optogenetics, Neuroengineering, Robotics, and other IT fields.

Join now: https://www.reddit.com/r/IntelligenceSupernova.

#Subreddit #IntelligenceSupernova

Bacterial enzyme that copies DNA might make more mistakes in zero gravity

(Inside Science) — An enzyme in the bacterium E. coli made more errors copying synthetic DNA when exposed to zero gravity than the same enzyme did in normal gravity, a recent study finds.

The paper raises the possibility that some enzymes work differently in space compared to on Earth. “It gives us an idea that enzymes, like polymerases or others that are involved in maintaining the integrity of our DNA, may be influenced by spaceflight,” said Susan Bailey, a radiation cancer biologist at Colorado State University in Fort Collins who has studied DNA damage caused by space radiation and did not contribute to the new paper.

Aaron Rosenstein, lead author of the paper and a bioengineering graduate student at the University of Toronto, said the finding “warrants further investigation into other enzymes that are involved in crucial pathways that are inherent to life and survival.”

A talk by David Pearce for the Stepping into the Future conference 2022

Synopsis: No sentient being in the evolutionary history of life has enjoyed good health as defined by the World Health Organization. The founding constitution of the World Health Organization commits the international community to a daringly ambitious conception of health: “a state of complete physical, mental and social wellbeing”. Health as so conceived is inconsistent with evolution via natural selection. Lifelong good health is inconsistent with a Darwinian genome. Indeed, the vision of the World Health Organization evokes the World Transhumanist Association. Transhumanists aspire to a civilization of superhappiness, superlongevity and superintelligence; but even an architecture of mind based on information-sensitive gradients of bliss cannot yield complete well-being. Post-Darwinian life will be sublime, but “complete” well-being is posthuman – more akin to Buddhist nirvana. So the aim of this talk is twofold. First, I shall explore the therapeutic interventions needed to underwrite the WHO conception of good health for everyone – or rather, a recognisable approximation of lifelong good health. What genes, allelic combinations and metabolic pathways must be targeted to deliver a biohappiness revolution: life based entirely on gradients of well-being? How can we devise a more civilized signalling system for human and nonhuman animal life than gradients of mental and physical pain? Secondly, how can genome reformists shift the Overton window of political discourse in favour of hedonic uplift? How can prospective parents worldwide – and the World Health Organization – be encouraged to embrace genome reform? For only germline engineering can fix the problem of suffering and create a happy biosphere for all sentient beings.

The End of Suffering – Genome Reform and the Future of Sentience – David Pearce

New algorithm could help enable next-generation deep brain stimulation devices

Now, a developed by Brown University bioengineers could be an important step toward such adaptive DBS. The algorithm removes a key hurdle that makes it difficult for DBS systems to sense while simultaneously delivering .

“We know that there are in the associated with disease states, and we’d like to be able to record those signals and use them to adjust neuromodulation therapy automatically,” said David Borton, an assistant professor of biomedical engineering at Brown and corresponding author of a study describing the algorithm. “The problem is that stimulation creates electrical artifacts that corrupt the signals we’re trying to record. So we’ve developed a means of identifying and removing those artifacts, so all that’s left is the signal of interest from the brain.”

New study confirms bioengineered RSV protein vaccine evokes protective immune response

Close interactions with infectious disease set both University of California, Santa Cruz graduate student Ana Nuñez Castrejon and Associate Professor of Biomolecular Engineering Rebecca DuBois on the path of studying respiratory syncytial virus (RSV), a common and sometimes dangerous respiratory disease for which there is not currently a vaccine. The two researchers recently marked a major milestone in their effort to create an effective vaccine for the virus with the publishing of their paper “Structure-based design and antigenic validation of respiratory syncytial virus G immunogens” in the Journal of Virology.

For fifth-year Baskin Engineering student and the paper’s lead author Nuñez Castrejon, a bout of pneumonia that lingered for months when she was an sparked her interest in studying respiratory illnesses. For DuBois, watching her child go through a serious infection of RSV, which can cause severe respiratory infections in infants/children and the elderly, led her to study the disease.

“We have all of these wonderful childhood vaccines that have eliminated so much childhood disease, but there are still a lot of infectious diseases that are really tough on children, and RSV is one of those that causes hospitalizations in children,” DuBois said.

Dr. Kara Spiller, PhD — Immunomodulatory Biomaterials In Regenerative Medicine — Drexel University

Immunomodulatory Biomaterials In Regenerative Medicine — Dr. Kara Spiller-Geisler, Ph.D., Drexel University School of Biomedical Engineering, Science and Health Systems.


Dr. Kara Spiller, PhD (https://drexel.edu/biomed/faculty/core/SpillerKara/) is Associate Professor in the Biomaterials and Regenerative Medicine Laboratory at Drexel University, in Philadelphia.

Dr. Spiller received her bachelor’s, master’s, and doctoral degrees in biomedical engineering from Drexel University where she conducted her doctoral research in the design of semi-degradable hydrogels for the repair of articular cartilage in the Biomaterials and Drug Delivery Laboratory at Drexel, and in the Shanghai Key Tissue Engineering Laboratory of Shanghai Jiao Tong University.

After completing her PhD, when she received the award for Most Outstanding Doctoral Graduate: Most Promise to Enhance Drexel’s Reputation, she conducted research in the design of scaffolds for bone tissue engineering as a Fulbright Fellow, in the Biomaterials, Biodegradables, and Biomimetics (the 3Bs) Research Group at the University of Minho in Guimaraes, Portugal. She also worked as a Postdoctoral Scientist at Columbia University.

Dr. Spiller is currently conducting research in the design of immuno-modulatory biomaterials, particularly for bone tissue engineering. Her research interests include cell-biomaterial interactions, biomaterial design, and international engineering education.

Stanford engineers develop computer that operates on water droplets

Circa 2015


Stanford bioengineer Manu Prakash and his students have developed a synchronous computer that operates using the unique physics of moving water droplets.

Computers and water typically don’t mix, but in Manu Prakash’s lab, the two are one and the same. Prakash, an assistant professor of bioengineering at Stanford, and his students have built a synchronous computer that operates using the unique physics of moving water droplets.

The computer is nearly a decade in the making, incubated from an idea that struck Prakash when he was a graduate student. The work combines his expertise in manipulating droplet fluid dynamics with a fundamental element of computer science – an operating clock.