Archive for the ‘bioengineering’ category: Page 4

Apr 11, 2023

A split ribozyme that links detection of a native RNA to orthogonal protein outputs

Posted by in categories: bioengineering, biotech/medical, chemistry

Individual RNA remains a challenging signal to synthetically transduce into different types of cellular information. Here, we describe Ribozyme-ENabled Detection of RNA (RENDR), a plug-and-play strategy that uses cellular transcripts to template the assembly of split ribozymes, triggering splicing reactions that generate orthogonal protein outputs. To identify split ribozymes that require templating for splicing, we use laboratory evolution to evaluate the activities of different split variants of the Tetrahymena thermophila ribozyme. The best design delivers a 93-fold dynamic range of splicing with RENDR controlling fluorescent protein production in response to an RNA input. We further resolve a thermodynamic model to guide RENDR design, show how input signals can be transduced into diverse outputs, demonstrate portability across different bacteria, and use RENDR to detect antibiotic-resistant bacteria. This work shows how transcriptional signals can be monitored in situ and converted into different types of biochemical information using RNA synthetic biology.

© 2023. The Author(s).

Conflict of interest statement.

Apr 10, 2023

When Your Boss Is Tracking Your Brain

Posted by in categories: bioengineering, ethics, law, neuroscience

Bioethicist Nita Farahany says privacy law hasn’t kept up with science as employers increasingly use neurotechnology in the workplace.

Apr 10, 2023

Age Reversal: 10 Ways It Will Change The World

Posted by in categories: augmented reality, bioengineering, business, genetics, life extension, robotics/AI, transhumanism

This video explores Age Reversal and 10 ways they will change the world. Watch this next video about digital immortality:
► Udacity: Up To 75% Off All Courses (Biggest Discount Ever):
► Jasper AI: Write 5x Faster With Artificial Intelligence:

Official Discord Server:
Patreon Page:

Continue reading “Age Reversal: 10 Ways It Will Change The World” »

Apr 4, 2023

Genetic analysis tool developed to improve cancer modeling

Posted by in categories: bioengineering, biotech/medical, genetics, health

Lifestyle behaviors such as eating well and exercising can be significant factors in one’s overall health. But the risk of developing cancer is predominantly at the whim of an individual’s genetics.

Our bodies are constantly making copies of our to produce new cells. However, there are occasional mistakes in those copies, a phenomenon geneticists call mutation. In some cases, these mistakes can alter proteins, fuse genes and change how much a gene gets copied, ultimately impacting a person’s risk of developing cancer. Scientists can better understand the impact of mutations by developing predictive models for tumor activity.

Christopher Plaisier, an assistant professor of biomedical engineering in the Ira A. Fulton Schools of Engineering at Arizona State University, is developing a called OncoMerge that uses genetic data to improve cancer modeling technology.

Mar 31, 2023

New nanoparticles can perform gene-editing in the lungs

Posted by in categories: bioengineering, biotech/medical, chemistry, genetics, nanotechnology

Engineers at MIT and the University of Massachusetts Medical School have designed a new type of nanoparticle that can be administered to the lungs, where it can deliver messenger RNA encoding useful proteins.

With further development, these could offer an inhalable treatment for and other diseases of the , the researchers say.

“This is the first demonstration of highly efficient delivery of RNA to the lungs in mice. We are hopeful that it can be used to treat or repair a range of genetic diseases, including cystic fibrosis,” says Daniel Anderson, a professor in MIT’s Department of Chemical Engineering and a member of MIT’s Koch Institute for Integrative Cancer Research and Institute for Medical Engineering and Science (IMES).

Mar 30, 2023

Artificial Cells — The Powerhouse of the Future

Posted by in categories: bioengineering, biotech/medical

Assessing how energy-generating synthetic organelles could sustain artificial cells.

Researchers have assessed the progress and challenges in creating artificial mitochondria and chloroplasts for energy production in synthetic cells. These artificial organelles could potentially enable the development of new organisms or biomaterials. The researchers identified proteins as the most crucial components for molecular rotary machinery, proton transport, and ATP production, which serves as the cell’s primary energy currency.

Energy production in nature is the responsibility of chloroplasts and mitochondria and is crucial for fabricating sustainable, synthetic cells in the lab. Mitochondria are not only “the powerhouses of the cell,” as the middle school biology adage goes, but also one of the most complex intracellular components to replicate artificially.

Mar 29, 2023

How energy-generating synthetic organelles could sustain artificial cells — a powerhouse of the future

Posted by in categories: bioengineering, biotech/medical, robotics/AI

Energy production in nature is the responsibility of mitochondria and chloroplasts, and is crucial for fabricating sustainable, synthetic cells in the lab. Mitochondria are “the powerhouses of the cell,” but are also one of the most complex intracellular components to replicate artificially.

In Biophysics Reviews, by AIP Publishing, researchers from Sogang University in South Korea and the Harbin Institute of Technology in China identified the most promising advancements and greatest challenges of artificial mitochondria and chloroplasts.

“If scientists can create artificial mitochondria and chloroplasts, we could potentially develop synthetic cells that can generate energy and synthesize molecules autonomously. This would pave the way for the creation of entirely new organisms or biomaterials,” author Kwanwoo Shin said.

Mar 29, 2023

Immortality is attainable by 2030: Google scientist

Posted by in categories: bioengineering, computing, Elon Musk, genetics, life extension, neuroscience, Ray Kurzweil

Do you really want to live forever? Futurist Ray Kurzweil has predicted that humans will achieve immortality in just seven years. Genetic engineering company touts ‘Jurassic Park’-like plan to ‘de-extinct’ dodo bird Elon Musk ‘comfortable’ putting Neuralink chip into one of his kids.


Mar 29, 2023

10 Women Founders Taking The Synthetic Biology World

Posted by in categories: bioengineering, biological, food, health

Here’s a list of 10 visionary synbio company founders – who happen to be women – harnessing the power of biology to transform everything from health to human and animal nutrition, agriculture, haircare, bioremediation, and mining.

Mar 27, 2023

How cell mechanics influences everything

Posted by in categories: bioengineering, biotech/medical, chemistry

“People study cells in the context of their biology and biochemistry, but cells are also simply physical objects you can touch and feel,” Guo says. “Just like when we construct a house, we use different materials to have different properties. A similar rule must apply to cells when forming tissues and organs. But really, not much is known about this process.”

His work in cell mechanics led him to MIT, where he recently received tenure and is the Class of ’54 Career Development Associate Professor in the Department of Mechanical Engineering.

At MIT, Guo and his students are developing tools to carefully poke and prod cells, and observe how their physical form influences the growth of a tissue, organism, or disease such as cancer. His research bridges multiple fields, including cell biology, physics, and mechanical engineering, and he is working to apply the insights from cell mechanics to engineer materials for biomedical applications, such as therapies to halt the growth and spread of diseased and cancerous cells.

Page 4 of 17912345678Last