Toggle light / dark theme

More progress for tissue engineering.


Skin is one of the easier starting points for 3D bioprinting, the application of rapid prototyping technologies to the construction of living tissue. Since skin is a thin tissue, the challenging issue of producing the intricate blood vessel networks needed to supply inner cells with oxygen and nutrients can be skipped. Thin tissue sections can be supported in a suitable nutrient bath, and after transplant, patient blood vessels will grow into the new skin. Further, there is a fairly large and long-established research and development industry involved in various forms of skin regeneration. Numerous forms of prototype skin-like tissues have been created over the years, lacking many of the features of the real thing, but still useful in the treatment of, for example, burn victims. Further, skin structure is by now well understood, and considerable progress has been made in deciphering the signals and environment needed for suitable cells to self-assemble into the correct arrangements. All told, it should not be a complete surprise to see significant progress emerge in this part of the field.

Read more

Scientists have engineered the first ever ‘semi-synthetic’ organisms, by breeding E. coli bacteria with an expanded, six-letter genetic code.

While every living thing on Earth is formed according to a DNA code made up of four bases (represented by the letters G, T, C and A), these modified E. coli carry an entirely new type of DNA, with two additional DNA bases, X and Y, nestled in their genetic code.

The team, led by Floyd Romesberg from the Scripps Research Institute in California, engineered synthetic nucleotides — molecules that serve as the building blocks of DNA and RNA — to create an additional base pair, and they’ve successfully inserted this into the E. coli’s genetic code.

Read more

That’s a relief.


Of all the potentially apocalyptic technologies scientists have come up with in recent years, the gene drive is easily one of the most terrifying. A gene drive is a tool that allows scientists to use genetic engineering to override natural selection during reproduction. In theory, scientists could use it to alter the genetic makeup of an entire species—or even wipe that species out. It’s not hard to imagine how a slip-up in the lab could lead to things going very, very wrong.

But like most great risks, the gene drive also offers incredible reward. Scientists are, for example, exploring how gene drive might be used to wipe out malaria and kill off Hawaii’s invasive species to save endangered native birds. Its perils may be horrifying, but its promise is limitless. And environmental groups have been campaigning hard to prevent that promise from ever being realized.

This week at the United Nations Convention on Biodiversity in Mexico, world governments rejected calls for a global moratorium on gene drives. Groups such Friends of the Earth and the Council for Responsible Genetics have called gene drive “gene extinction technology,” arguing that scientists “propose to use extinction as a deliberate tool, in direct contradiction to the moral purpose of conservation organizations, which is to protect life on earth.”

Caspian tigers were some of the largest cats ever to roam the Earth, but they went extinct in the 1960s. Now, some scientists want to bring them back.

A new study, published in the journal Biological Conservation, lays out the plan to reintroduce the tigers using a subspecies, the Siberian tiger, which is genetically similar to the Caspian tiger.

The authors write in their paper that the Siberians tiger’s “phenotype proves adaptable to the arid conditions of the introduction site”.

Read more