Menu

Blog

Archive for the ‘bioengineering’ category: Page 167

Oct 27, 2017

Researchers create new ‘letters’ to enhance DNA functions

Posted by in categories: bioengineering, biotech/medical, genetics, nanotechnology

Just like how letters are strung together to form words, our DNA is also strung together by letters to encode proteins. The genetic alphabet contains only 4 natural letters — A, C, G and T, which hold the blueprint for the production of proteins that make our bodies work. Now, researchers from the Institute of Bioengineering and Nanotechnology (IBN) of the Agency for Science, Technology and Research (A*STAR) have created a DNA technology with two new genetic letters that could better detect infectious diseases, such as dengue and Zika.

Genetic alphabet expansion technology is the introduction of artificial base pairs into DNA. The existing four genetic letters are naturally bound together in base pairs of A-T and G-C. These specific base pair formations are essential in DNA replication, which occurs in all living organisms. It is the process by which a DNA molecule is duplicated to produce two identical molecules.

“The expansion of the genetic alphabet is a significant scientific achievement. It sheds insights into DNA’s natural replication mechanism, which will help us to design unique DNA molecules and technologies. For example, our technology can be used to create novel diagnostics and therapeutic agents with superior efficacy,” said IBN Executive Director Professor Jackie Ying.

Read more

Oct 26, 2017

Scientists working toward reversible kind of gene editing

Posted by in categories: bioengineering, biotech/medical, genetics

Scientists are altering a powerful gene-editing technology in hopes of one day fighting diseases without making permanent changes to people’s DNA.

The trick: Edit RNA instead, the messenger that carries a gene’s instructions.

“If you edit RNA, you can have a reversible therapy,” important in case of side effects, said Feng Zhang of the Broad Institute of MIT and Harvard, a gene-editing pioneer whose team reported the new twist Wednesday in the journal Science.

Read more

Oct 23, 2017

How Creating a Gene Circuit Could Help to Combat Cancer

Posted by in categories: bioengineering, biotech/medical

A research team at MIT has used synthetic biology to create a gene circuit that triggers the immune system to attack cancer when it first detects the signs of the disease.

The circuit works by only activating the immune response when two specific cancer biomarkers are detected. The new study was published in the journal Cell this week and represents an exciting step forward for synthetic biology and cancer research.

Read more

Oct 20, 2017

Synthetic Biology and Evolution

Posted by in categories: bioengineering, biological, evolution

Darwinian evolution is old-fashioned. Bioengineering raises new principles for the creation of life but, to what extent can we dispense with the past of our biology.

Read more

Oct 19, 2017

Gene editing in the brain gets a major upgrade

Posted by in categories: bioengineering, biotech/medical, neuroscience

Genome editing technologies have revolutionized biomedical science, providing a fast and easy way to modify genes. However, the technique allowing scientists to carryout the most precise edits, doesn’t work in cells that are no longer dividing — which includes most neurons in the brain. This technology had limited use in brain research, until now. Research Fellow Jun Nishiyama, M.D., Ph.D., Research Scientist, Takayasu Mikuni, M.D., Ph.D., and Scientific Director, Ryohei Yasuda, Ph.D. at the Max Planck Florida Institute for Neuroscience (MPFI) have developed a new tool that, for the first time, allows precise genome editing in mature neurons, opening up vast new possibilities in neuroscience research.

This novel and powerful tool utilizes the newly discovered gene editing technology of CRISPR-Cas9, a viral defense mechanism originally found in bacteria. When placed inside a cell such as a neuron, the CRISPR-Cas9 system acts to damage DNA in a specifically targeted place. The cell then subsequently repairs this damage using predominantly two opposing methods; one being non-homologous end joining (NHEJ), which tends to be error prone, and homology directed repair (HDR), which is very precise and capable of undergoing specified gene insertions. HDR is the more desired method, allowing researchers flexibility to add, modify, or delete genes depending on the intended purpose.

Coaxing in the to preferentially make use of the HDR DNA repair mechanism has been rather challenging. HDR was originally thought to only be available as a repair route for actively proliferating cells in the body. When precursor brain cells mature into neurons, they are referred to as post-mitotic or nondividing cells, making the mature brain largely inaccessible to HDR — or so researchers previously thought. The team has now shown that it is possible for post-mitotic neurons of the brain to actively undergo HDR, terming the strategy “vSLENDR (viral mediated single-cell labeling of endogenous proteins by CRISPR-Cas9-mediated homology-directed repair).” The critical key to the success of this process is the combined use of CRISPR-Cas9 and a virus.

Read more

Oct 19, 2017

Scientists Developed a Way to Precisely Edit Genes in the Human Brain

Posted by in categories: bioengineering, biotech/medical, neuroscience

Researchers have developed a technique that enables gene editing on neurons — something previously thought to be impossible. This new tool will present amazing new opportunities for neuroscience research.

Technologies designed for editing the human genome are transforming biomedical science and providing us with relatively simple ways to modify and edit genes. However, precision editing has not been possible for cells that have stopped dividing, including mature neurons. This has meant that gene editing has been of limited use in neurological research — until now. Researchers at the Max Planck Florida Institute for Neuroscience (MPFI) have created a new tool that allows, for the first time ever, precise genome editing in mature neurons. This relieves previous constraints and presents amazing new opportunities for neuroscience research.

Read more

Oct 16, 2017

When Should We Edit Human Genes? What You Need to Know

Posted by in categories: bioengineering, biotech/medical

There’s a difference between editing genes in a person’s somatic cells and germline cells.

Editing somatic cells, which are differentiated (e.g., skin cells) and non-reproductive, impacts them alone. In contrast, editing germline DNA means changes are passed along to the next generation during reproduction. It’s no minor distinction.

Continue reading “When Should We Edit Human Genes? What You Need to Know” »

Oct 15, 2017

The First Human to Attempt CRISPR Gene Editing on Their Genome

Posted by in categories: bioengineering, biotech/medical, genetics

https://youtube.com/watch?v=o6A9bbDI6fo

The first attempt at human CRISPR gene editing did not occur in a hospital or University or in a clinical trial by some $100 million funded company. Instead, it happened in small cramped room in San Francisco in front of 30 or so people who squeezed in to listen to a talk about how biohackers are making genetic and cellular modification accessible.

Read more

Oct 15, 2017

Gene Editing Is Here, and Desperate Patients Want It

Posted by in categories: bioengineering, biotech/medical, genetics

Two-thirds of Americans support therapeutic use, but regulators are still stuck in the 1970s.

Should Americans be allowed to edit their DNA to prevent genetic diseases in their children? That question, which once might have sounded like science fiction, is stirring debate as breakthroughs bring the idea closer to reality. Bioethicists and activists, worried about falling down the slippery slope to genetically modified Olympic athletes, are calling for more regulation.

Read more

Oct 12, 2017

Roundtable: Is human gene editing ethical?

Posted by in categories: bioengineering, biotech/medical, genetics, health

I join this 30 min panel with scientists and a mother with a down syndrome child on Turkish national television to debate genetic editing. I adovcate for allowing genetic editing to improve the human race, despite fears:


Better, stronger, disease-free humans. Editing human DNA could save lives and enhance them. But should we be playing god?
Genes determine our health, looks, the way we function. They’re the ingredients for life. The idea that we could one day change them is an exciting prospect, but also an ethical minefield. As science moves closer towards gene editing, the concern is that it could go too far and even create a new elite group of enhanced humans.

Continue reading “Roundtable: Is human gene editing ethical?” »