Menu

Blog

Archive for the ‘bioengineering’ category: Page 118

Jul 5, 2019

Dr. Steffanie Strathdee PhD. — UCSD Center for Innovative Phage Applications and Therapeutics (IPATH) — ideaXme — Ira Pastor

Posted by in categories: aging, bioengineering, biotech/medical, counterterrorism, defense, disruptive technology, existential risks, genetics, health, life extension

Jul 3, 2019

Bacteria engineered as Trojan horse for cancer immunotherapy

Posted by in categories: bioengineering, biotech/medical, genetics

The emerging field of synthetic biology—designing new biological components and systems—is revolutionizing medicine. Through the genetic programming of living cells, researchers are creating engineered systems that intelligently sense and respond to diverse environments, leading to more specific and effective solutions in comparison to current molecular-based therapeutics.

At the same time, —using the body’s immune defenses to fight cancer—has transformed over the past decade, but only a handful of have responded, and often results in significant side effects. Designing therapies that can induce a potent, anti– immune response within a solid tumor without triggering systemic toxicity has posed a significant challenge.

Researchers at Columbia Engineering and Columbia University Irving Medical Center (CUIMC) announced today that they are addressing this challenge by engineering a strain of non– that can colonize solid tumors in mice and safely deliver potent immunotherapies, acting as a Trojan Horse that treats tumors from within. The therapy led not only to complete tumor regression in a mouse model of lymphoma, but also significant control of distant, uninjected tumor lesions. Their findings are published today in Nature Medicine.

Jul 2, 2019

Scissors get stuck—another way bacteria use CRISPR/Cas9

Posted by in categories: bioengineering, biotech/medical

In biotech these days, CRISPR/Cas9 is a hot topic, because of its utility as a precise gene editing tool. Before humans repurposed it, CRISPR/Cas9 was a sort of internal immune system bacteria use to defend themselves against phages, or viruses that infect bacteria, by slicing up the phages’ DNA.

Scientists at Emory University School of Medicine and the Max Planck Unit for the Science of Pathogens have found that the “scissors” component of CRISPR/Cas9 sometimes gets stuck.

Cas9, an enzyme that cuts DNA, can also block without doing any cutting. In the pathogenic bacterium Francisella novicida, Cas9 regulates that need to be shut off for the bacteria to cause disease.

Jul 2, 2019

Have mice really been cured of HIV using CRISPR gene editing?

Posted by in categories: bioengineering, biotech/medical

Some mice receiving a therapy that includes CRISPR gene editing appear to have been cured of HIV, but safety concerns must be overcome before human trials.

Jul 2, 2019

U.S. Army Making Synthetic Biology a Priority

Posted by in categories: bioengineering, biotech/medical, military

New thermal cloaking, insect proof uniforms are on the horizon, if the U.S. can get out in front of China.

The U.S. Army’s new Futures Command is accelerating research into synthetic biotechnology to help the military develop next-generation living camouflage and other never-before-seen organisms and materials.

Dimitra Stratis-Cullum, who is overseeing the research in synthetic biology for the U.S. Army Research Laboratory’s Combat Capabilities Development Command, detailed the effort on Thursday at the fourth annual Defense One Tech Summit.

Jul 2, 2019

First life with ‘alien’ DNA

Posted by in categories: bioengineering, biotech/medical, genetics

Circa 2014


An engineered bacterium is able to copy DNA that contains unnatural genetic letters.

Jul 1, 2019

Anti-Aging Approaches

Posted by in categories: bioengineering, biotech/medical, life extension

Sirtuins can be activated by a lack of amino acids or of sugar, or through an increase in NAD. — David Sinclair If you have not heard of #davidsinclair then it is time you have. he is at the forefront of anti aging research and one of my heroes. While we wait for the miracle pills there are alot of thing we can do to help us age better already. #biohacking #biohacker


Can a single molecule extend lifespan?

Jun 30, 2019

Dr. Leroy Hood, Co-founder, Chief Strategy Officer, and Professor, Institute for Systems Biology — ideaXme Show — Ira Pastor

Posted by in categories: aging, bioengineering, biological, bioprinting, biotech/medical, business, DNA, genetics, health, life extension

Jun 28, 2019

Magnetic Fields Encourage Cellular Reprogramming

Posted by in categories: bioengineering, biotech/medical, genetics, health

Could be used in a portable device to genetically reprogram ones body.


Environmental conditions, such as heat, acidity, and mechanical forces, can affect the behavior of cells. Some biologists have even shown that magnetic fields can influence them. Now, for the first time, an international team reports that low-strength magnetic fields may foster the reprogramming of cellular development, aiding in the transformation of adult cells into pluripotent stem cells (ACS Nano 2014, DOI: 10.1021/nn502923s). If confirmed, the phenomenon could lead to new tools for bioengineers to control cell fates and help researchers understand the potential health effects of changing magnetic fields on astronauts.

Biologists have been building up evidence that magnetic fields affect living things, says Michael Levin, director of Tufts University’s Center for Regenerative & Developmental Biology, who was not involved in the new study. For example, plants and amphibian embryos develop abnormally when shielded from Earth’s geomagnetic field. And there’s some clinical evidence that particular electromagnetic frequencies promote bone fracture healing and wound repair (Eur. Cytokine Network 2013, DOI: 10.1684/ecn.2013.0332).

Continue reading “Magnetic Fields Encourage Cellular Reprogramming” »

Jun 25, 2019

How biohackers are trying to upgrade their brains, their bodies — and human nature

Posted by in categories: bioengineering, neuroscience

9 questions about biohacking you were too embarrassed to ask.