Menu

Blog

Archive for the ‘alien life’ category: Page 6

Jul 30, 2024

The Role of Magnetic Fields in Planetary Habitability

Posted by in categories: alien life, computing, economics

“While these conditions are necessary for a planet to host life, they do not guarantee it,” said Anthony Atkinson. “Our work highlights the importance of considering a wide range of factors when searching for habitable planets.”


Does a planet just have to be in a star’s habitable zone to be habitable, or are other forces at play? This is what a recent study published in The Astrophysical Journal hopes to address as a team of researchers from Rice University and NASA investigated whether the interaction between a star’s and a planet’s respective magnetic fields could play a role in determining the habitability potential for an exoplanet. This study holds the potential to help scientists better understand the formation and evolution of exoplanets and the necessary conditions for life to emerge on those worlds.

“The fascination with exoplanets stems from our desire to understand our own planet better,” said Dr. David Alexander, who is a professor of physics and astronomy at Rice University, director of the Rice Space Institute and member of the Texas Aerospace Research and Space Economy Consortium, and a co-author on the study. “Questions about the Earth’s formation and habitability are the key drivers behind our study of these distant worlds.”

Continue reading “The Role of Magnetic Fields in Planetary Habitability” »

Jul 29, 2024

Artificial Intelligence Will Let Humanity Talk to Alien Civilizations

Posted by in categories: alien life, robotics/AI

Large language models may enable real-time communication with extraterrestrial civilizations despite the vast distances between stars. We need to start thinking about what to tell them about us.

By Franck Marchis & Ignacio G. López-Francos

Jul 23, 2024

2001: Creating Kubrick’s Space Odyssey

Posted by in categories: alien life, entertainment

2001: CREATING KUBRICK’S SPACE ODYSSEY chronicles the creation of one of the most influential films in the history of cinema. This new documentary examines the work of legendary director Stanley Kubrick and iconic novelist Arthur C. Clarke in creating what they called “the proverbial good science fiction movie.” Filmmaker Roger Lay, Jr. tackles the enigmatic film through interviews with 2001 star Keir Dullea (who played astronaut Dave Bowman) and choreographer Dan Richter (who played Moonwatcher, the proto-human ape who learned to use the first tool). Both provide personal insights into their work on the groundbreaking film.

Other interviews include 2001 visual effects technician Brian Johnson (Academy Award winner for Alien and Star Wars: The Empire Strikes Back), film historian Michael Benson (author of Space Odyssey: Kubrick, Clarke, and the Making of a Masterpiece), and technologist Jules Urbach (CEO of OTOY). They discuss not only the revolutionary visual effects of the Kubrick film, but also the movie’s enduring influence.

Continue reading “2001: Creating Kubrick’s Space Odyssey” »

Jul 18, 2024

Life could exist in a 2D universe (according to physics, anyway)

Posted by in categories: alien life, physics

Physicists and philosophers have long claimed that life can form only in a universe like ours, with three dimensions of space and one of time. That thinking may need to be revised.

Jul 12, 2024

NASA is considering Other Ways of getting its Mars Samples Home

Posted by in categories: alien life, habitats

In 2021, NASA’s Perseverance rover landed in the Jezero Crater on Mars. For the next three years, this astrobiology mission collected soil and rock samples from the crater floor for eventual return to Earth. The analysis of these samples is expected to reveal much about Mars’ past and how it transitioned from being a warmer, wetter place to the frigid and desiccated place we know today. Unfortunately, budget cuts have placed the future of the proposed NASA-ESA Mars Sample Return (MSR) mission in doubt.

As a result, NASA recently announced that it was seeking proposals for more cost-effective and rapid methods of bringing the samples home. This will consist of three studies by NASA and the Johns Hopkins University Applied Physics Laboratory (JHUAPL).

In addition, NASA has selected seven commercial partners for firm-fixed-price contracts for up to $1.5 million to conduct their own 90-day studies. Once complete, NASA will consider which proposals to integrate into the MSR mission architecture.

Jul 8, 2024

Exoplanet’s Rotten Egg Smell Revealed by Webb Telescope

Posted by in category: alien life

“Sulfur is a vital element for building more complex molecules, and—like carbon, nitrogen, oxygen, and phosphate—scientists need to study it more to fully understand how planets are made and what they’re made of,” said Dr. Guangwei Fu.


How do exoplanets smell? This is what a recent study published in Nature hopes to address as a team of researchers investigated the atmosphere of HD 189,733 b, which is a “hot Jupiter” located approximately 64 light-years from Earth, discovering this unique exoplanet’s atmosphere contains hydrogen sulfide, which is a byproduct of sulfur and known for its rotten egg-like smell. This discovery holds the potential to help astronomers better understand the atmospheric composition of exoplanets and how these compositions can drive the interior processes of these exoplanets, as well.

Artist’s illustration of HD 189,733 b. (Credit: Roberto Molar Candanosa/Johns Hopkins Univeristy)

Continue reading “Exoplanet’s Rotten Egg Smell Revealed by Webb Telescope” »

Jul 7, 2024

A new model for defining life across the Universe

Posted by in categories: alien life, physics

Physicists are exploring how life’s unique information-processing abilities might help us redefine what it means to be alive.

Jul 3, 2024

AI and the Astrochicken: the interstellar destiny of AI

Posted by in categories: alien life, nuclear energy, quantum physics, robotics/AI

#aliens #robots Welcome to an extraordinary exploration of artificial intelligence and its cosmic counterpart, the astro-chicken! Join me in this mind-blowing video where we delve into the captivating concept of interstellar colonization. You can find my book Gravity: From Falling Apples to Supermassive Black Holes here on Amazon: https://www.amazon.co.uk/Gravity-Fall… The Cosmic Mystery Tour here: https://www.amazon.co.uk/Cosmic-Myste… Artificial intelligences offers the only way to explore the stars. Humans are very delicate and not at all suited to interstellar travel. After all, it is a long long way to the stars. The nearest star is 40 trillion kilometres away. The distance between the stars is too great for it to be feasible to travel so far within human lifespans. The limitations of our biology will prevent us from exploring deep space in person. Although we might like to fantasize about traveling from star system to star system with Captain Kirk, it is almost inconceivable that any humans will ever reach the stars. But maybe there is another way to colonize the galaxy. The British theoretical physicist Freeman Dyson certainly thought so. In the 1960s Dyson, who was one of the architects of quantum electrodynamics — our best theory of electromagnetism — speculated that any sufficiently advanced civilisation would explore the galaxy by launching fleets of autonomous self-replicating robots. There are, of course, many advantages to sending robots rather than humanoids. Robots are more robust than organic lifeforms, they never get bored, and they require far less in the way of maintenance and life support systems. They can survive in harsh environments, and they are adaptable — they can be upgraded. Robots equipped with artificial intelligence could operate autonomously and perform tasks that are impossible for humans, and they could survive indefinitely. Robots could also be miniaturized so they would require far less propulsion to send them on their way. Dyson’s robots would take a blueprint or template that would enable them to create more self-replicating robots. On arrival at a suitable asteroid or planet they would establish a base and set up a means of generating and storing energy. They would then extract and refine minerals and eventually build factories with assembly lines for creating more autonomous robots, each with its own copy of the blueprint, and a propulsion system for the colonization of other star systems. Dyson called these robots astro-chickens. They would travel between the stars as cosmic eggs, hatch on arrival at a suitable destination, then create and disperse the next generation of cosmic eggs. There is no reason, in principle, why super-advanced civilizations could not create such robot explorers. They could attain high speeds as cosmic eggs using some sort of nuclear fusion engine, perhaps. The diameter of our galaxy is about 100,000 light years. Traveling between stars at a significant fraction of the speed of light, the astro-chickens could colonize the entire galaxy in under one million years, which is not long by astronomical or evolutionary time-scales. So where are the astro-chickens? No artefact of an alien civilization has ever been discovered. But, if alien civilizations exist, it might be easier to find their robot descendants than the original aliens. Maybe they are closer than we think. In fact, I have already created my own design for an autonomous, self-replicating robot, which you can witness here on my laptop. Prepare to be enthralled!

Jul 1, 2024

Reconnaissance of Potentially Habitable Worlds with Webb

Posted by in categories: alien life, chemistry

Exoplanets are common in our galaxy, and some even orbit in the so-called habitable zone of their star. NASA’s James Webb Space Telescope has been busy observing a few of these small, potentially habitable planets, and astronomers are now hard at work analyzing Webb data. We invite Drs. Knicole Colón and Christopher Stark, two Webb project scientists at NASA’s Goddard Space Flight Center, to tell us more about the challenges in studying these other worlds:

A potentially habitable planet is often defined as a planet similar in size to Earth that orbits in the ‘habitable zone’ of its star, a location where the planet could have a temperature where liquid water could exist on its surface. We currently know of around 30 planets that may be small, rocky planets like Earth and that orbit in the habitable zone. However, there is no guarantee that a planet that orbits in the habitable zone actually is habitable (it could support life), let alone inhabited (it currently supports life). At the time of writing, there is only one known habitable and inhabited planet—Earth.

The potentially habitable worlds Webb is observing are all transiting exoplanets, meaning their orbits are nearly edge-on so that they pass in front of their host stars. Webb takes advantage of this orientation to perform transmission spectroscopy when the planet passes in front of its star. This orientation allows us to examine the starlight filtered through the atmospheres of planets to learn about their chemical compositions.

Jun 29, 2024

Perseverance Mars rover team revives life-hunting instrument after 6 months of effort

Posted by in category: alien life

A stuck lens cover had prevented SHERLOC from focusing on targets.

Page 6 of 142First345678910Last