Toggle light / dark theme

Illustration of 3D-printed sensory composite (credit: Subramanian Sundaram)

MIT researchers have designed a radical new method of creating flexible, printable electronics that combine sensors and processing circuitry.

Covering a robot — or an airplane or a bridge, for example — with sensors will require a technology that is both flexible and cost-effective to manufacture in bulk. To demonstrate the feasibility of their new method, the researchers at MIT’s Computer Science and Artificial Intelligence Laboratory have designed and built a 3D-printed device that responds to mechanical stresses by changing the color of a spot on its surface.

Read more

In a bid to get around terrestrial height restrictions, Clouds Architecture Office has proposed suspending the world’s tallest skyscraper from an asteroid, leaving residents to parachute to earth.

New York-based Clouds Architecture Office drew up plans for Analemma Tower to “overturn the established skyscraper typology” by building not up from the ground but down from the sky by affixing the foundations to an orbiting asteroid.

“Harnessing the power of planetary design thinking, it taps into the desire for extreme height, seclusion and constant mobility,” said the architects, who have previously drawn up proposals for space transportation and a 3D-printed ice house on Mars.

Read more

Adam Savage gets up close with the one-of-a-kind 3D-printed endoskeleton Weta Workshop made for the upcoming Ghost in the Shell. Chatting with Weta Workshop technician Jared Haley in the studio’s 3D modeling room, Adam learns about the experimentation and prototyping necessary to make this gobsmackingly beautiful prop, which is made of several hundred individual pieces!

Shot and edited by Joey Fameli

Subscribe for more videos! https://www.youtube.com/subscription_center?add_user=testedcom
Follow us on Twitter: http://www.twitter.com/testedcom
Get updates on Facebook: http://www.facebook.com/testedcom

Tested is:

Researchers at ETH Zurich and IBM Research Zurich have built a tiny redox flow battery. This means that future computer chip stacks — in which individual chips are stacked like pancakes to save space and energy — could be supplied with electrical power and cooled at the same time by such integrated flow batteries (Energy & Environmental Science, “3D-printed fluidic networks for high-power-density heat-managing miniaturized redox flow batteries”).

In a flow battery, an electrochemical reaction is used to produce electricity out of two liquid electrolytes, which are pumped to the battery cell from outside via a closed electrolyte loop.

Three-dimensional chip stack

Read more

The advantage of Daqri’s chip, the company says, is that it can create holograms without the need for complex optics. On a silicon wafer, a tiny grid of tunable crystals is used to control the magnitude and time delay, or phase, of reflected light shined at the surface of the chip from a laser. Software adjusts the crystals to create patterns of interference in the light, resulting in a three-dimensional light field.

In experiments, the team has used the chip to create solid objects by projecting holograms into containers of various light-activated monomers. It can currently make small objects, such as a paper clip, in about five seconds—a process that could take a normal 3D printer several minutes.


A startup called Daqri has technology that can print solid objects faster and also powers a new kind of head-up display.

Read more

Every day in a San Diego lab, raw material derived from donated tissue unsuitable for organ transplantation goes into a machine, and three-dimensional human liver tissue is printed out.

Pioneered by a company called Organovo, this 3D bioprinting technology may one day achieve the Holy Grail of its industry: the manufacturing of whole human organs to replace damaged ones. But for now, it’s already making an impact on human health, as pharmaceutical and biotech companies are using its manufactured human liver tissue to test the toxicity of new drugs and therapies.

Organovo is developing multiple tissue types for therapeutic use, with strong early results in animal models. In three to five years, there’s a good chance that it will have an Investigational New Drug Application in at least one tissue. The company’s strategic plan is coming to fruition just as its chief scientific officer, Sharon Presnell, envisioned when she joined the startup in 2011.

Read more

The new research, led by nanoengineering professor Shaochen Chen, addresses one of the biggest challenges in tissue engineering: creating lifelike tissues and organs with functioning vasculature — networks of blood vessels that can transport blood, nutrients, waste and other biological materials — and do so safely when implanted inside the body.

Researchers from other labs have used different 3D printing technologies to create artificial blood vessels. But existing technologies are slow, costly and mainly produce simple structures, such as a single blood vessel — a tube, basically. These blood vessels also are not capable of integrating with the body’s own vascular system.

“Almost all tissues and organs need blood vessels to survive and work properly. This is a big bottleneck in making organ transplants, which are in high demand but in short supply,” said Chen, who leads the Nanobiomaterials, Bioprinting, and Tissue Engineering Lab at UC San Diego. “3D bioprinting organs can help bridge this gap, and our lab has taken a big step toward that goal.”

Read more

Researchers from the University of California, San Diego have successfully 3D printed a framework of functional blood vessels. Blood vessel networks are important in transporting blood, nutrients and waste around the human body.

The research team employed a 3D bioprinting process involving hydrogel and endothelial cells. Endothelial are the form of cells that make up the inner lining of blood vessels.

Leading the research was Shaochen Chen, who explains the motivation of the project.

Read more