Toggle light / dark theme

A class of synthetic soft materials called liquid crystal elastomers (LCEs) can change shape in response to heat, similar to how muscles contract and relax in response to signals from the nervous system. 3D printing these materials opens new avenues to applications, ranging from soft robots and prosthetics to compression textiles.

Controlling the material’s properties requires squeezing this elastomer-forming ink through the of a 3D printer, which induces changes to the ink’s internal structure and aligns rigid building blocks known as mesogens at the molecular scale. However, achieving specific, targeted alignment, and resulting properties, in these shape-morphing materials has required extensive trial and error to fully optimize printing conditions. Until now.

In a new study, researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), Princeton University, Lawrence Livermore National Laboratory, and Brookhaven National Laboratory worked together to write a playbook for printing liquid crystal elastomers with predictable, controllable alignment, and hence properties, every time.

An Oregon State University researcher has helped create a new 3D printing approach for shape-changing materials that are likened to muscles, opening the door for improved applications in robotics as well as biomedical and energy devices.

The liquid crystalline elastomer structures printed by Devin Roach of the OSU College of Engineering and collaborators can crawl, fold and snap directly after printing. The study is published in the journal Advanced Materials.

“LCEs are basically soft motors,” said Roach, assistant professor of mechanical engineering. “Since they’re soft, unlike regular motors, they work great with our inherently soft bodies. So they can be used as implantable medical devices, for example, to deliver drugs at targeted locations, as stents for procedures in target areas, or as urethral implants that help with incontinence.”

MIT scientists are building ElectroVoxels, small, smart, self-assembling robots designed for space.

It’s programmable matter, infinitely recyclable large-scale 3D printing, if you will, and it could be the future of robotics and machinery in space. In this TechFirst, I chat with MIT PhD student Martin Nisser.

To design their improved materials, Serles and Filleter worked with Professor Seunghwa Ryu and PhD student Jinwook Yeo at the Korea Advanced Institute of Science & Technology (KAIST) in Daejeon, South Korea. This partnership was initiated through U of T’s International Doctoral Clusters program, which supports doctoral training through research engagement with international collaborators.

The KAIST team employed the multi-objective Bayesian optimization machine learning algorithm. This algorithm learned from simulated geometries to predict the best possible geometries for enhancing stress distribution and improving the strength-to-weight ratio of nano-architected designs.

Serles then used a two-photon polymerization 3D printer housed in the Centre for Research and Application in Fluidic Technologies (CRAFT) to create prototypes for experimental validation. This additive manufacturing technology enables 3D printing at the micro and nano scale, creating optimized carbon nanolattices.

3D printing news News NASA and Rocket Lab Enter a New Era With the Neutron Rocket.

Published on January 27, 2025 by Madeleine P.

With the goal of further expanding its reach in space missions, NASA has signed an agreement with Rocket Lab USA, Inc. to integrate the Neutron rocket into the VADR program. This is a program to procure launch services at competitive prices and reduce mission requirements for spacecraft that have not yet been launched into orbit. Neutron is a medium-range launch vehicle manufactured by Rocket Lab USA that is partially reusable and powered by nine 3D-printed Archimedes engines designed to increase the efficiency and flexibility of space launches.

Caltech researchers have developed PAMs, a novel material that blends the properties of solids and liquids, making them highly adaptable for diverse applications.

These materials are inspired by chain mail but take structural complexity to new levels, thanks to advanced 3D printing.

Discovering a new type of material.

Researchers at the University of Maine have managed to 3D print an organic building material with the strength of steel.

The SM2ART Nfloor is printed as a single piece in about 30 hours, which is a third faster than building something comparable by hand according to TechXplore.

The nice thing about this set-up is that these panels can be printed in bulk off-site and get shipped to the construction area. Since there are already channels in the floor for electrical and plumbing, the only other thing that needs to be applied by hand is soundproofing and floor covering.

When 3D printing was first introduced in 1985, it marked a major turning point for the manufacturing industry. In addition to being cheaper than traditional manufacturing technologies, it also promised the ability to customize designs and make prototypes on demand. While its technology is still considered relatively new, there has been an accelerating demand for 3D printing methods across sectors in the past decade, ranging from aerospace and defense to medicine.

Yet, Associate Professor Pablo Valdivia y Alvarado from the Singapore University of Technology and Design (SUTD) believes that there are still ways to go before 3D printing can achieve its full potential. In traditional 3D printing, a nozzle is used to print the material layer by layer, and the path that the nozzle takes is known as the toolpath.

However, layer-by-layer printing is incompatible for use with materials like silicone, epoxies, and urethanes that are slow-curing and take more time to harden. These types of materials are often used to create soft mechanical metamaterials which, in turn, are used for lightweight, nature-inspired structures, such as lattices and web structures. Deposition-based processes in 3D printing, such as direct ink writing, would be able to work with these materials to create such structures, but these suffer from non-optimized toolpaths.

Researchers at the University of Toronto’s Faculty of Applied Science & Engineering have used machine learning to design nano-architected materials that have the strength of carbon steel but the lightness of Styrofoam.

In a new paper published in Advanced Materials, a team led by Professor Tobin Filleter describes how they made nanomaterials with properties that offer a conflicting combination of exceptional strength, light weight and customizability. The approach could benefit a wide range of industries, from automotive to aerospace.

“Nano-architected materials combine high performance shapes, like making a bridge out of triangles, at nanoscale sizes, which takes advantage of the ‘smaller is stronger’ effect, to achieve some of the highest strength-to-weight and stiffness-to-weight ratios, of any material,” says Peter Serles, the first author of the new paper.