Toggle light / dark theme

Ballantine designs ‘space glass’ for drinking whiskey in microgravity

Anyone offended by the prospect of drinking fine whiskey inside sealed space packs with straws after Suntory sent its finest variety to the ISS for testing? Don’t worry: Ballantine’s got your back. The liquor company has commissioned Open Space Agency’s James Parr — who also created a Lumia-powered 3D-printed telescope in the past — to design a high-tech whiskey glass especially for zero-G environments. He tested a number of designs before settling on a rounded glass with a spiral convex stainless steel base plated in rose gold that can create the surface tension necessary to hold the liquor down. The liquid then passes through channels on the sides of the glass all the way up to the golden mouthpiece.

The “glass” part itself is actually 3D-printed medical-grade PLA plastic, the same kind used for heart valves. Since everything tends to float in microgravity, the base hides a 22-pound magnet that can be used to stick the glass on magnetic surfaces. Plus, it has a one way valve where a customized whiskey bottle nozzle can be inserted to pour out a shot. Parr and Ballantine published more details about the design process on Medium, if you’d like to read more about how the “space glass” was created. Sure, it could be nothing but a marketing stunt, but it’s amazing how much thought went into designing a whiskey glass. It’s unfortunate that most of us might never get to use it in its intended environment; good thing the final product at least looks fancy enough to display.

Read more

Why 3D Printing Will Be a Key Technology in the Next Space Race

NASA recently announced that they test fired a research rocket engine. Nothing special about that—other than the fact said engine was 75 percent 3D printed parts.

As industrial 3D printing has moved from prototyping to actually manufacturing finished products, the aerospace industry has become an avid early adopter. Although in many industries mass production techniques still make economic sense—for the ultra-precise, almost bespoke parts in rockets? 3D printing is a great fit.

Last year, GE showed off a scaled down 3D printed jet engine firing at 33,000 RPM. SpaceX’s recent recovery of a Falcon 9 rocket was not only spectacular, but the rocket has long used 3D printed parts too. And NASA’s latest trial shows 3D printing is set to become an even bigger part of rocket engine manufacturing.

Read more

This is the first object 3D-printed from alien metal

So-called ” asteroid mining” company Planetary Resources is built on the belief that asteroids and other objects in space are loaded with resources that we can take advantage of, both here on Earth and as we begin to explore space in earnest. The essentially infinite supply of rocks floating through space, filled with valuable minerals that we’ll eventually run out of on our home planet, sounds like a great resource to take advantage of. But the idea of mining, processing and building with alien metals also sounds like a massive and daunting undertaking.

Read more

Planetary Resources & 3D Systems Reveal First Ever 3D Printed Object from Asteroid Metals

The future of space colonization and industrialization can now be visualized.

Planetary Resources, in collaboration with our partner 3D Systems, have developed the first ever direct metal print from asteroid metals. At the Consumer Electronics Show (CES) today in Las Vegas, NV., we unveiled the geometric object on the Engadget stage.

PlanetaryResources_3DSystems_MeteoriteLow

Read more

Groundbreaking Ceramic Resin Developed

title_01_hrl3D printed ceramics are still something of a rarity, compared to other materials. The material has several limitations; it’s generally printed by sintering powder materials that result in porous, relatively weak end products with low heat resistance. This greatly limits the size and shape of objects that can be printed; 3D printed ceramic objects have thus far been pretty much limited to relatively small decorative items or tableware. But that’s all about to change, thanks to a new material developed by research and development company HRL Laboratories, LLC.

kilnHRL, which is owned by Boeing and General Motors, has developed a ceramic resin that can be printed through stereolithography. The company actually calls it a “pre-ceramic” resin that prints like a typical plastic resin, and is then fired in a high temperature kiln, which turns it into a dense ceramic. The resulting objects are about ten times stronger than other 3D printed ceramics, have virtually no porosity, and can withstand temperatures higher than 1700°C.

“With our new 3D printing process we can take full advantage of the many desirable properties of this silicon oxycarbide ceramic, including high hardness, strength and temperature capability as well as resistance to abrasion and corrosion,” said program manager Dr. Tobias Schaedler.

Read more

3D Systems Displays New ProX DMP 320 Metal 3D Printer at CES 2016

After the acquisition of Phenix Systems, 3D Systems has been slow to roll out its metal 3D printing technology, an issue raised in a class action lawsuit against the company. Nevertheless, the company has been making progress and, today, 3D Systems announced the availability of their newest system, the ProX DMP 320.

prox_320 dmp 3D printed part from 3D systems

The ProX DMP 320 is designed to be a high precision, high throughput laser sintering metal 3D printer capable of handling itanium, stainless steel, and nickel super alloy. Built with exchangeable manufacturing modules, the ProX DMP 320 is meant to allow for quick material change. To achieve the repeatability much sought after in mainstream manufacturing, the machine has preset build parameters based off of almost half-a-million builds. The ProX DMP 320 features a large build volume of 275mm x 275mm x 420mm with two configurations available, one meant for stainless steel and the other nickel super alloy. The machine offers centralized maintenance management, reduced argon gas use, and support for a serial manufacturing workflow.

Read more

Cartilage growing to rebuild body parts ‘within three years’

Patients needing surgery to reconstruct body parts such as noses and ears could soon have treatment using cartilage which has been grown in a lab.

The process involves growing someone’s cells in an incubator and then mixing them with a liquid which is 3D printed into the jelly-like shape needed.

It is then put back in an incubator to grow again until it is ready.

Read more

Company Claims To Have Developed 3D Printed Liver Tissue

3D printing in the medical industry isn’t new. We’ve seen companies 3D print prosthetics and even bones, but now a company in India has claimed to have developed 3D printable liver tissue, which they are hoping that one day will be usable for full-fledged liver transplants, although we suppose there will be quite a bit of legal and regulatory hurdles to overcome.

According to Pandorum Technologies, the company behind the technology, they claim that these 3D printed liver tissues are made of human cells and will allow for inexpensive medical research. This also means that reachers will need to rely less on human and animal trials. The entire process could also save companies millions of dollars which is usually needed in research and development.

Pandorum Technologies’ co-founder Arun Chandru said, “Our 3D bio-printed mini-livers that mimic the human liver will serve as test platforms for discovery and development of drugs with better efficacy, less side effects and at lower costs.” Apart from being used as test platforms, 3D printable liver tissue could also be used for other purposes.

Read more