Toggle light / dark theme

Outer space is about to get its first pop-up retail shop.

Lowe’s, the home-improvement store, has teamed up with Made In Space, the company behind the world’s first zero-G 3D printer, to launch the first commercial manufacturing facility on the International Space Station.

The Additive Manufacturing Facility (AMF), as it is called, is an advanced, permanent 3D printer that will be available for use not only by NASA and its station partners, but also by researchers, educational organizations and commercial customers.

Read more

The world’s first 3D-printed hotel suite is located in the Philippines. This is just the first in a series of 3D-printed buildings the designer hopes to create in the area.

Planning a vacation to the Philippines? Consider staying at the Lewis Grand Hotel, where a newly-printed room awaits its first guests. You read that right. The hotel, which is located in Angeles City, Pampanga, has the world’s first 3D-printed hotel suite.

Printing a Hotel Suite in 100 Hours

Hotel owner and materials science engineer Lewis Yakich worked with 3D printing specialist Anthony Rudenko to create the hotel suite. The two men worked together to design the massive 3D printer that spews out the concrete made from sand and volcanic ash.

Read more

YES PLEASE.

It’s 7.5 times lighter than air, and a cubic metre of the stuff weighs just 160 grams. It’s 12 percent lighter than the second lightest material in the world – aerographite – and you can balance a few cubic centimetres of the stuff on a dandelion head. Water is about 1,000 times as dense.

Yep, graphene aerogel is about as cool as it gets. And while silica aerogel (pictured above) is the most commonly used and studied type of aerogel, as of 2013, graphene aerogel has held the record of being the lightest material on Earth. And producing it is about to get a whole lot easier because scientists have just figured out how to 3D print it.

Read more

March 16th, 2016 Editors Nanomedicine

light-activated-bio-botsBiologically powered robots may one day be used to perform surgical procedures, deliver drugs, and maybe to even make humanoid overlords for us mortals. A big step toward that was taken by researchers at University of Illinois at Urbana-Champaign who used light-activated muscle cells as the power source to make tiny bio-bots.

biobot
The optogenetic technique published in Proceedings of the National Academy of Sciences relies on genetically engineered mouse muscle cells that were made to contract in response to blue light. Rings of these cells were placed around a 3D printed flexible rods of different lengths between two and seven millimeters. When light was illuminated over the mechanism, the biobots contracted and walked in a certain direction. Various lengths and configurations were tried to achieve the best walking results. Moreover, the researchers were able to change the direction of the walking bio-bot.

Read more