Menu

Blog

Archive for the ‘3D printing’ category: Page 125

Oct 7, 2015

#18 Avatar Technology Digest / Paralyzed Patients Control Comp…

Posted by in categories: 3D printing, bioengineering, biotech/medical, computing, materials, robotics/AI

1. A heart of foam.
2. Artificial arteries.
3. Brain implants.
4. Robotic hand that can recognize objects by Feel.
5. Upside-Down Rover to explore Europa.


Welcome to #18 Avatar Technology Digest. Again, get ready for exciting news on Technology, Medical Cybernetics and Artificial Intelligence. Thank you for watching us. You are welcome to Subscribe, follow us in social media, leave your comments and join the conversation. And here are the top stories of the last week.

1) A heart of foam could replace your own. Existing artificial hearts have multiple moving parts, which increases the chance of failure, but this new device is just a single piece of material. Researchers inspired by soft robots have built a pumping artificial heart that could one day replace the real deal.
The team of Bioengineers at Cornell University build their robots out of a solid, plastic foam, which naturally has an interconnected network of tubes to let air flow – just as our muscles are permeated by blood vessels. A solid coating of plastic seals everything inside like a skin.

Continue reading “#18 Avatar Technology Digest / Paralyzed Patients Control Comp…” »

Sep 30, 2015

Thanks to a new breakthrough, we’re now one step closer to 3D printing replacement organs

Posted by in categories: 3D printing, biotech/medical

http://voc.tv/1cRrjAQ

Read more

Sep 30, 2015

3D printing in gel shows how scientists could print human organs

Posted by in categories: 3D printing, biotech/medical, cyborgs, materials, neuroscience, transhumanism

While scientists have had success in the past printing structures like “bionic ears,” a clear path to making functional internal organs and tissue hasn’t really emerged. However, researchers at the University of Florida in Gainesville have developed a way of printing complex objects in gel, a method that could help pave the way to 3D-printed organs in the future.

The hard thing about printing intricate organic structures like blood vessels and complicated organs is that they collapse under their own weight before they solidify. The gel here, which is made of an acrylic acid polymer, acts as a scaffold to hold the structure in place during the printing process. That approach has already allowed the team to print with organic materials — and even make a replica of a human brain.

Continue reading “3D printing in gel shows how scientists could print human organs” »

Sep 29, 2015

Scientists pioneer 3-D-printed drug delivering micro-needles

Posted by in categories: 3D printing, biotech/medical

Researchers have developed a new technique to produce a 3D ‘micro-printed’ array of needles capable of drug delivery. The technique would offer a pain-free drug delivery device that would allow drugs to diffuse within the body as the biomaterial device degrades in the body. This offers treatments for a wide range of diseases, including melanoma cancers.

The results are published today, Wednesday 30th September, in the journal Biofabrication .

The researchers, based at the University of Akron and the University of Texas, report producing a drug-loaded array for transdermal delivery of a , fabricated using microstereolithography. The arrays consisted of 25 poly(propylene fumarate) microneedles, each needle having a tip and base diameter of 20 µm and 200 µm, respectively, and a height of 1 mm.

Read more

Sep 23, 2015

DNA-guided 3-D printing of human tissue

Posted by in categories: 3D printing, biotech/medical

Reconstituting epithelial (skin) microtissues with programmed size, shape, composition, spatial heterogeneity, and embedding extracellular matrix. Scheme and images of fully embedded aggregates of human luminal and myoepithelial cells. (credit: Michael E Todhunter et al./Nature Methods)

A new technique developed by UCSF scientists for building organoids (tiny models of human tissues) more precisely turns human cells into the biological equivalent of LEGO bricks. Called DNA Programmed Assembly of Cells (DPAC), it allows researchers in hours to create arrays of thousands of custom-designed organoids, such as models of human mammary glands containing several hundred cells each.

Read more

Sep 23, 2015

3D printed scaffolds allow for precise release of biomolecules into the human body

Posted by in categories: 3D printing, biotech/medical

Just days ago it was announced that a 3D printed guide developed by researchers in Minnesota could help facilitate the regrowth of damaged nerves within the human body. In the wake of this exciting breakthrough, is another progressive use for 3D printing within the medical world, as the same researchers have found a way to release biomolecules into the body through a 3D printed scaffold with more precision than ever before.

Continue reading “3D printed scaffolds allow for precise release of biomolecules into the human body” »

Sep 23, 2015

Breakthrough medical discovery: 3D printing might be used to regenerate nerves

Posted by in categories: 3D printing, biotech/medical, cybercrime/malcode, mobile phones

Having significantly damaged nerve tissue is bad for a lot of reasons because it doesn’t regenerate easily and it can lead to various serious medical conditions including paralysis. But many scientists are already studying ways of fixing this issue, and a team of researchers from the University of Minnesota, Virginia Tech, University of Maryland, Princeton University, and Johns Hopkins University has figured out how to use 3D printing for nerve growth.

DON’T MISS: 85 legitimate iPhone apps that were infected with malware in the big App Store hack

Continue reading “Breakthrough medical discovery: 3D printing might be used to regenerate nerves” »

Sep 21, 2015

Open Source ‘Solar Pocket Factory’ Can 3D Print a Solar Panel Every 15 Seconds

Posted by in categories: 3D printing, computing, electronics, mobile phones, solar power, sustainability

Shawn Frayne and Alex Hornstein, two young inventors based in the Philippines, are taking their passion for clean free energy and developing a way to make it accessible and cheap for everyone. These guys are working restlessly to provide a product that could be used by practically anyone to make homemade solar panels.

The factory is small enough to fit on a desktop and efficient enough to produce 300k to one million panels per year, up to one every 15 seconds. By cutting out much of the labor intensive process, which represents 50% of the total cost, this machine can dramatically reduce the price of solar. Their pocket solar panel producer can change the way the world views electricity. Image credit: YouTube/SciFri

Continue reading “Open Source ‘Solar Pocket Factory’ Can 3D Print a Solar Panel Every 15 Seconds” »

Sep 21, 2015

New ‘shape-shifting’ material can reconstruct faces

Posted by in categories: 3D printing, biotech/medical, materials

Called a shape-memory polymer (SMP) and developed by a team at Texas A&M University in the US, this biodegradable material can be used to fill in gaps in a damaged face and act as a scaffold to guide the growth of existing bones.

The researchers made their shape-memory polymer by linking molecules of another material — polycaprolactone, or PCL — and whipping it into a foam. According to Jackie Hong at Motherboard, the material is soft and easy to mould when heated to 60°C (140°F), and sets when it’s cooled to body temperature without becoming brittle. It can be used in 3D printing and moulding, which means it can be shaped into extremely precise models and bone scaffolds, and it’s full of tiny holes like a sponge, which allows bone-producing cells called osteoblasts to collect inside and grow.

According to Hong, the researchers enhanced this osteoblast-growing effect by coating their SMP material in polydopamine — a different kind of polymer substance that helps bind existing bones to the SMP scaffold, and has been shown in previous studies to encourage the growth of osteoblasts. Over a three-day trial, their coated SMP scaffold grew five times more osteoblasts than their uncoated scaffold.

Read more

Sep 19, 2015

World’s largest delta-style 3D printer can print nearly zero-cost housing out of mud

Posted by in categories: 3D printing, sustainability

The future of affordable (and sustainable) housing may lie with 3D printing. The World’s Advanced Saving Project (WASP) will soon unveil the world’s largest delta-style 3D printer that can build full-size buildings out of mud and clay for nearly zero cost. The massive 12-meter-tall (40 feet) BigDelta printer will make its official debut and show off its eco-friendly printing prowess tomorrow at “Reality of dream,” a three-day event in Massa Lombarda, Italy.

Read more