Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Perseverance Finds Tropical-Style Clays on Mars

Dr. Briony Horgan: “You need so much water that we think these could be evidence of an ancient warmer and wetter climate where there was rain falling for millions of years.”


What was Mars like billions of years ago? This is what a recent study published in Communications Earth & Environment hopes to address as an international team of scientists investigated intriguing evidence from the surface of Mars that could indicate heavy water activity existed long ago. This study has the potential to help scientists better understand ancient conditions on Mars and whether they were favorable for supporting life as we know it.

For the study, the researchers examined aluminum-rich rock fragments that were discovered by NASA’s Perseverance rover within Jezero Crater on Mars, and specifically the processes how they formed. This is because aluminum-rich clay minerals on Earth often form from heavy rainfall or other water-driven activities. Using the rover’s SuperCam and Mastcam-Z instruments, the researchers discovered the fragments—which were composed of aluminum and titanium with depleted traces of iron and magnesium—likely were analogs for heavy rainfall on Earth under greenhouse conditions. Therefore, the researchers concluded they potentially formed under intense wet conditions on Mars.

The unique architecture of umbrella toxins permits a two-tiered molecular bet-hedging strategy for interbacterial antagonism

Umbrella toxin particles produced by Actinobacteria contain five spokes tipped with variable lectin domains. Here, Zhao et al. show that these lectins mediate species-specific binding to a previously unrecognized cell surface carbohydrate polymer and propose that the modular nature of umbrella particles enables bet hedging against unpredictable competitor encounters.

Cell nucleus shape may influence cancer treatment success

Cancer cells with a cell nucleus that is easily deformed are more sensitive to drugs that damage DNA. These are the findings of a new study by researchers at Linköping University in Sweden. The results may also explain why combining certain cancer drugs can produce the opposite of the intended effect. The study has been published in the journal Nature Communications.

A few years ago, a new type of drug was introduced that exploits deficiencies in cancer cells’ ability to repair damage to their DNA. These drugs, called PARP1 inhibitors, are used against cancers that have mutations in genes involved in DNA repair, such as the breast cancer gene 1 (BRCA1).

This gene has such a central role in the cell’s ability to repair serious DNA damage that mutations in it greatly increase the risk of developing cancer, often at a young age. The risk is so high that some women with a mutated BRCA1 gene choose to have their breasts and ovaries surgically removed to prevent cancer.

Plant ‘first responder’ cells warn neighbors about bacterial pathogens

Purdue University researchers found that a subset of epidermal cells in plant leaves serves as early responders to chemical cues from bacterial pathogens and communicate this information to neighbors through a local traveling wave of calcium ions. The properties of this local wave differ from those generated when epidermal cells are wounded, suggesting that distinct mechanisms are used by plants to communicate specific types of pathogen attack, the team reported Dec. 2 in Science Signaling.

The new work from Purdue’s Emergent Mechanisms in Biology of Robustness Integration and Organization (EMBRIO) Institute highlights the importance of calcium ion signatures or patterns in the cytoplasm of cells. Plants and animals use calcium ions to transmit biologically critical sensory information within single cells, across tissues and even between organs.

“When a bacterium infects plant material, or when a fungus tries to invade plant tissue, cells and tissues recognize the presence of an attacker,” said Christopher Staiger, a professor in the Department of Botany and Plant Pathology and Distinguished Professor of Biological Sciences. “They recognize both chemical and mechanical cues. This study is largely about how the chemical cues are sensed.”

A New Cell Atlas Helps Researchers Navigate the Developing Brain

The phrase “the whole is greater than the sum of its parts” is perfectly emphasized in large, collaborative researcher projects.

Recently, several research teams published a package of studies outlining the most comprehensive map of the mammalian brain during development.

Here, two researchers talk about the challenges and benefits of such teamwork.


Researchers collaborating on a BRAIN Initiative project unveiled the most comprehensive map of developing mammalian brains to date, offering new insights into neurodevelopment.

Light-activated protein triggers cancer cell death by raising alkalinity

One of the hallmarks of cancer cells is their ability to evade apoptosis, or programmed cell death, through changes in protein expression. Inducing apoptosis in cancer cells has become a major focus of novel cancer therapies, as these approaches may be less toxic to healthy tissue than conventional chemotherapy or radiation. Many chemical agents are currently being tested for their ability to trigger apoptosis, and researchers are increasingly exploring light-activated molecules that can be precisely targeted to tumor sites using lasers, sparing surrounding healthy tissue.

Cancer cells have mitochondria that supply energy for rapid growth and division, but an overly alkaline environment is thought to disrupt mitochondrial function, leading to apoptosis.

A microbial protein called Archaerhodopsin-3 (AR3) may hold the key to alkalinity-induced apoptosis. When exposed to green light, AR3 pumps hydrogen ions out of the cell, increasing alkalinity, disrupting cellular functions, and eventually inducing apoptosis.

Single Nucleotide SMN1 Variants in a Cohort of Individuals With Spinal Muscular Atrophy

Background and ObjectivesSpinal muscular atrophy 5q (SMA) is a motor neuron disorder caused by recessive pathogenic variants in the SMN1 gene, which encodes the survival motor neuron (SMN) protein. While the majority of patients with SMA exhibit…

/* */