Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

The Role of Bioelectrical Patterns in Regulative Morphogenesis: An Evolutionary Simulation and Validation in Planarian Regeneration

Endogenous bioelectrical patterns are an important regulator of anatomical pattern during embryogenesis, regeneration, and cancer. While there are three known classes of instructive bioelectric patterns: directly encoding, indirectly encoding, and binary trigger, it is not known how these design principles could be exploited by evolution and what their relative advantages might be. To better understand the evolutionary role of bioelectricity in anatomical homeostasis, we developed a neural cellular automaton (NCA). We used evolutionary algorithms to optimize these models to achieve reliable morphogenetic patterns driven by the different ways in which tissues can interpret their bioelectrical pattern for downstream anatomical outcomes. We found that: All three types of bioelectrical codes allow the reaching of target morphologies; Resetting of the bioelectrical pattern and the change in duration of the binary trigger alter morphogenesis; Direct pattern organisms show an emergent robustness to changes in initial anatomical configurations; Indirect pattern organisms show an emergent robustness to bioelectrical perturbation; Direct and indirect pattern organisms show a emergent generalizability competency to new (rotated) bioelectrical patterns; Direct pattern organisms show an emergent repatterning competency in post-developmental-phase. Because our simulation was fundamentally a homeostatic system seeking to achieve specific goals in anatomical state space (the space of possible morphologies), we sought to determine how the system would react when we abrogated the incentive loop driving anatomical homeostasis. To abrogate the stress/reward system that drives error minimization, we used anxiolytic neuromodulators. Simulating the effects of selective serotonin reuptake inhibitors diminished the ability of artificial embryos to reduce error between anatomical state and bioelectric prepattern, leading to higher variance of developmental outcomes, global morphological degradation, and induced in some organisms a bistability with respect to possible anatomical outcomes. These computational findings were validated by data collected from in vivo experiments in SSRI exposure in planarian flatworm regeneration.

Smells interpreted as taste!

When we eat or drink, we don’t just experience taste, but rather a ‘flavor’. This taste experience arises from a combination of taste and smell, where aromas from food reach the nose via the oral cavity, known as retronasal odor. Researchers have now shown that the brain integrates these signals earlier than previously thought – already in the insula, a brain region known as the taste cortex – before the signals reach the frontal cortex, which controls our emotions and behavior.

“We saw that the taste cortex reacts to taste-associated aromas as if they were real tastes,” explains the lead author. “The finding provides a possible explanation for why we sometimes experience taste from smell alone, for example in flavored waters. This underscores how strongly odors and tastes work together to make food pleasurable, potentially inducing craving and encouraging overeating of certain foods.”

The study involved 25 healthy adults who were first taught to recognize both a sweet taste and a savory taste through combinations of taste and smell. This was followed by two brain imaging sessions using functional magnetic resonance imaging (fMRI), in which the participants were given either a tasteless aroma or a taste without smell. The researchers trained an algorithm to recognize patterns in brain activity for sweet and savory tastes, and then tested whether the same patterns could be identified when the participants were only given aromas.

3D bioprinted mini placentas could transform pregnancy research

Pregnancy complications lead to more than 260,000 and millions of infant deaths globally. One serious condition in linked to placental dysfunction is preeclampsia, which affects 5%–8% of pregnancies.

The study, led by Associate Professor Lana McClements and first author Dr. Claire Richards, from the UTS School of Life Sciences, has just been published in the journal Nature Communications.

Caltech Researchers Upend Decades-Old Model of Mitochondrial Protein Import

Researchers showed that many mitochondrial proteins enter the organelle during synthesis, guided by folding patterns and structural signals. This discovery revises decades of biochemical models. Mitochondria are organelles most commonly known as the “powerhouses of the cell” because they generate

Pesa: I am happy to report that things are progressing nicely with My Instant AI 🤖

Thanks to some longstanding relationships with senior executives in the prepaid and gift card industry has provided us with some unprecedented opportunities.

Our engineers are hard at work building more AI tools and utilities into the user interface and our administrative management dashboard as well.

It won’t be more than a few weeks before our first distributor is interconnected and starting to sell My Instant AI e-PIN codes.

There are many different ways to sell this product. Some will be selling it in their online stores, using their own sales and payment engines, while pulling PINs from our API in real-time as they are sold.

Others will have carded product that has a value applied to it and then activated at the checkout in a retail environment.

Some mobile phone and wireless network providers are including a card in the box, and preloading a shortcut to our platform as an app on the phone’s home screen.

How the death of the dinosaurs reengineered Earth

Dinosaurs had such an immense impact on Earth that their sudden extinction led to wide-scale changes in landscapes—including the shape of rivers—and these changes are reflected in the geologic record, according to a University of Michigan study.

Scientists have long recognized the stark difference in rock formations from just before dinosaurs went extinct to just after, but chalked it up to sea level rise, coincidence, or other abiotic reasons. But U-M paleontologist Luke Weaver shows that once dinosaurs were extinguished, forests were allowed to flourish, which had a strong impact on rivers.

Weaver and colleagues examined locations throughout the western United States that depicted sudden geologic changes that occurred at the boundary between the age of dinosaurs and the age of mammals.

Stony Brook Simulations Help Explain Lightning’s Mysterious Origins

STONY BROOK, NY — September 5, 2025– A recent study in Nature Physics reveals how ordinary ice can generate electricity, providing crucial insight into the origins of lightning. It was discovered that ice exhibits strong flexoelectricity—an electromechanical effect that occurs when the material is bent. At Stony Brook University, PhD student Anthony Mannino, working under

China to carry out asteroid defense system test in near future: chief scientist

China has recently unveiled its plan to initiate an experimental verification project to demonstrate and test the effectiveness of its asteroid defense system, and Wu Weiren, one of the country’s top space scientists, stressed the necessity of such project to the Global Times on Sunday, saying that from the perspective of safeguarding the Earth’s safety and the continuation of humanity, building asteroid defense capabilities is a shared task for all humankind, while calling on further international collaborative efforts against the threats posed by asteroid impact.

“As a responsible spacefaring nation, China has the responsibility, obligation, and capability to contribute Chinese wisdom, leverage Chinese strength, and systematically develop an asteroid detection and defense system, working together with the world to protect our planetary home,” Wu said. Wu is the chief designer of China’s lunar exploration program and director and chief scientist of the country’s Deep Space Exploration Laboratory (DSEL).

Wu outlined China’s asteroid exploration and defense system in detail for the first time at the third International Deep Space Exploration Conference, and during the event held from Thursday to Friday in Hefei, East China’s Anhui Province, Wu revealed that in the near future, China will conduct a kinetic impact demonstration and verification mission on an asteroid posing a potential threat to Earth.

Tesla AI5 & AI6 Chips “Compressing Reality”?! What Did Elon See?!

Elon Musk has revealed Tesla’s new AI chips, AI5 and AI6, which will drive the company’s shift towards AI-powered services, enabling significant advancements in Full Self-Driving capabilities and potentially revolutionizing the self-driving car industry and beyond.

## Questions to inspire discussion.

Tesla’s AI Chip Advancements.

🚀 Q: What are the key features of Tesla’s AI5 and AI6 chips? A: Tesla’s AI5 and AI6 chips are inference-first, designed for high-throughput and efficient processing of AI models on devices like autos, Optimus, and Grok voice agents, being 40x faster than previous models.

💻 Q: How do Tesla’s AI5 and AI6 chips compare to previous models? A: Tesla’s AI5 chip is a 40x improvement over AI4, with 500 TOPS expanding to 5,000 TOPS, enabling excellent performance in full self-driving and Optimus humanoid robots.

🧠 Q: What is the significance of softmax in Tesla’s AI5 chip? A: AI5 is designed to run softmax natively in a few steps, unlike AI4 which relies on CPU and runs softmax in 40 steps in emulation mode.

/* */