New research shows that dementia risk is best predicted by combining genetic vulnerability with cardiovascular disease markers, revealing a more precise and actionable way to identify who is most likely to develop the condition.
There are few technologies more fundamental to modern life than the ability to control light with precision. From fiber-optic communications to quantum sensors, the manipulation of photons underpins much of our digital infrastructure. Yet one capability has remained frustratingly out of reach: controlling light with light itself at the most fundamental level using single photons to switch or modulate powerful optical beams.
Now, researchers at Purdue University have achieved this long-sought milestone, demonstrating what they call a “photonic transistor” that operates at single-photon intensities.
Their findings, published in the journal Nature Nanotechnology, report a nonlinear refractive index several orders of magnitude higher than the best-known materials, a leap that could finally make photonic computing practical.
A vast region of our solar system, called the Kuiper belt, stretches from the orbit of Neptune out to 50 or so astronomical units (AU), where an AU is the distance between Earth and the sun. This region consists mostly of icy objects and small rocky bodies, like Pluto. Scientists believe Kuiper belt objects (KPOs) are remnants left over from the formation of the solar system.
Now, a new preprint paper on arXiv describes a newly identified region that appears to be completely distinct from other parts of the Kuiper belt—but some uncertainty remains.
For experimental physicists, the latest measurement of the muon is the best of times. For theorists there’s still work to do.
Colliding 300 billion muons over four years at the Fermi National Accelerator Laboratory in the U.S., the Muon g-2 Collaboration —a group of over 200 researchers—has measured the magnetic strength of the muon to unprecedented precision: accurate to 127 parts per billion.
These final results on the muon’s magnetic moment—measured by its frequency of the moment’s wobbling in an external magnetic field—are the end of a chain of experimental efforts going back 30 years and have been published in the journal Physical Review Letters.
The understanding of complex many-body dynamics in laser-driven polyatomic molecules is crucial for any attempt to steer chemical reactions by means of intense light fields. Ultrashort and intense X-ray pulses from accelerator-based free electron lasers (FELs) now open the door to directly watch the strong reshaping of molecules by laser fields.
A prototype molecule, the famous football-shaped “Buckminsterfullerene” C₆₀, was studied both experimentally and theoretically by physicists from two Max Planck Institutes, the one for Nuclear Physics (MPIK) in Heidelberg and the one for the Physics of Complex Systems (MPI-PKS) in Dresden in collaboration with groups from the Max Born Institute (MBI) in Berlin and other institutions from Switzerland, U.S. and Japan.
For the first time, the experiment carried out at the Linac Coherent Light Source (LCLS) of the SLAC National Accelerator Laboratory could image strong-laser-driven molecular dynamics in C₆₀ directly.
At low temperatures, hydrogen atoms move less like particles and more like waves. This characteristic enables quantum tunneling, the passage of an atom through a barrier with a higher potential energy than the energy of the atom. Understanding how hydrogen atoms move through potential barriers has important industrial applications. However, the small size of hydrogen atoms makes direct observation of their motion extremely challenging.
In a study published in Science Advances, researchers at the Institute of Industrial Science, The University of Tokyo report precise detection of quantum tunneling of hydrogen atoms in palladium metal.
Palladium is a metal that absorbs hydrogen. Palladium atoms are arranged in a repeating three-dimensional cubic pattern, otherwise known as a lattice. Hydrogen atoms can enter this lattice by occupying interstitial sites between the large palladium atoms. These sites are octahedral and tetrahedral in shape. Hydrogen sits stably in an octahedral site and can hop to another octahedral site via a tetrahedral site, which is metastable, i.e., less stable than an octahedral site.
Two-dimensional (2D) van der Waals (vdW) ferromagnets are thin and magnetic materials in which molecules or layers are held together by weak attractive forces known as vdW forces. These materials have proved to be promising for the development of spintronic devices, systems that operate leveraging the spin (i.e., intrinsic angular momentum) of electrons, as opposed to electric charge.
A crucial parameter in the context of magnetization is the so-called Gilbert damping coefficient, which indicates how quickly a material’s magnetization loses energy and returns to a state of equilibrium after being disturbed. A lower damping coefficient is more favorable for the development of spintronics, as it means that less energy is lost once a material’s magnetization is set into motion.
Researchers at Beijing Normal University, Shanghai University and Fudan University carried out a study aimed at better understanding the underpinnings of low Gilbert damping in 2D vdW ferromagnets.
In the search for a way to measure different forms of a condition called sensory processing disorder, neuroscientists are using imaging to see how young brains process sensory stimulation.
Now, investigators at UC San Francisco have found a distinctive pattern for overwhelm in some children who are overly sensitive to sound, touch, and visual information. The finding could one day help clinicians refine treatments for kids who have strong emotional and behavioral reactions, such as tantrums, to their sensory environment.
Sensory processing disorder affects how the brain understands and responds to sensory information but still lacks an official medical diagnosis. The study appeared in the Journal of Neurodevelopmental Disorders on Nov. 21, 2025.
Scientists have been able to measure the electrical signals in the “second brain in our guts” for the first-ever time, giving renewed understanding to its interconnection with the brain.
Researchers from the Department of Chemical Engineering and Biotechnology (CEB) and Department of Engineering at the University of Cambridge, and Thayer School of Engineering at Dartmouth have created a miniature device, thinner than the width of a hair, that can be placed between the layers of the colon to record these signals.
The device, a soft, flexible electronic implant, has been tested in rodents and pigs so far and works even in freely moving animals, detecting responses to various stimulants and physical pressure.