Statistics is a useful tool for understanding the patterns in the world around us. But our intuition often lets us down when it comes to interpreting those patterns. In this series we look at some of the common mistakes we make and how to avoid them when thinking about statistics, probability and risk.
You don’t have to wait long to see a headline proclaiming that some food or behavior is associated with either an increased or a decreased health risk, or often both. How can it be that seemingly rigorous scientific studies can produce opposite conclusions?
Nowadays, researchers can access a wealth of software packages that can readily analyze data and output the results of complex statistical tests. While these are powerful resources, they also open the door to people without a full statistical understanding to misunderstand some of the subtleties within a dataset and to draw wildly incorrect conclusions.
Comments are closed.