Menu

Blog

Archive for the ‘quantum physics’ category: Page 239

Apr 18, 2022

Fractal Pattern in a Quantum Material Confirmed for the First Time!

Posted by in categories: mathematics, quantum physics

Image by: Arkadiusz Jadczyk.

The word fractal has become increasingly popular, although the concept started more than two centuries ago in the 17th century with prominent and prolific mathematician and philosopher Gottfried Wilhelm Leibnitz is believed to have addressed for the first time the notion of recursive self-similarity, and it wasn’t until 1960 that the concept was formally stabilized both theoretically and practically, through the mathematical development and computerized visualizations by Benoit Mandelbrot, who settled on the name “fractal”.

Apr 18, 2022

Assessing physical realism experimentally in a quantum-regulated device

Posted by in categories: particle physics, quantum physics

In a new report now published in Nature Communications Physics, Pedro R. Dieguez and an international team of scientists in quantum technologies, functional quantum systems and quantum physics, developed a new framework of operational criterion for physical reality. This attempt facilitated their understanding of a quantum system directly via the quantum state at each instance of time. During the work, the team established a link between the output visibility and elements of reality within an interferometer. The team provided an experimental proof-of-principle for a two-spin-½ system in an interferometric setup within a nuclear magnetic resonance platform. The outcomes validated Bohr’s original formulation of the complementarity principle.

Physics according to Niels Bohr

Bohr’s complementarity principle states that matter and radiation can be submitted to a unifying framework where either element can behave as a wave or a particle, based on the experimental setup. According to Bohr’s natural philosophy, the nature of individuality of quantum systems is discussed relative to the definite arrangement of whole experiments. Almost a decade ago, physicists designed a quantum delayed choice experiment (QDCE), with a beam splitter in spatial quantum superposition to render the interferometer to have a “closed + open” configuration, while the system represented a hybrid “wave + particle” state. Researchers had previously coupled a target system to a quantum regulator and tested these ideas to show how photons can exhibit wave-like or particle-like behaviors depending on the experimental technique used to measure them.

Apr 17, 2022

Graphene-hBN breakthrough to spur new LEDs, quantum computing

Posted by in categories: computing, quantum physics

In a discovery that could speed research into next-generation electronics and LED devices, a University of Michigan research team has developed the first reliable, scalable method for growing single layers of hexagonal boron nitride on graphene.

The process, which can produce large sheets of high-quality hBN with the widely used molecular-beam epitaxy process, is detailed in a study in Advanced Materials.

Continue reading “Graphene-hBN breakthrough to spur new LEDs, quantum computing” »

Apr 17, 2022

Quantum computing: The benefits of being quantum-ready

Posted by in categories: computing, education, quantum physics

To fully embrace the benefits of quantum computing in the future, we need to focus on education and workforce development and become quantum-ready today.


The 13-year-old daughter of a friend visiting my workplace — the IBM Research lab in Zurich — seemed puzzled. She knew I worked in a research lab and I that work with computers, but the computers she knows don’t typically resemble the chandelier-like structure that hung from the ceiling in front of us.

Yet, it is a computer – a quantum computer. And while someone in their early teens right now can be excused for not knowing what a quantum computer is, I would very much like that to change.

Apr 15, 2022

Ancient Namibian stone could hold key to future quantum computers

Posted by in categories: computing, particle physics, quantum physics

A special form of light made using an ancient Namibian gemstone could be the key to new light-based quantum computers, which could solve long-held scientific mysteries, according to new research led by the University of St Andrews.

The research, conducted in collaboration with scientists at Harvard University in the US, Macquarie University in Australia and Aarhus University in Denmark and published in Nature Materials, used a naturally mined cuprous oxide (Cu2O) gemstone from Namibia to produce Rydberg polaritons, the largest hybrid particles of light and matter ever created.

Rydberg polaritons switch continually from light to matter and back again. In Rydberg polaritons, light and matter are like two sides of a coin, and the matter side is what makes polaritons interact with each other.

Apr 14, 2022

World Quantum Day: Meet our researchers and play The Qubit Game

Posted by in categories: entertainment, quantum physics, robotics/AI

For World Quantum Day, the Google Quantum AI team is introducing people to the world of quantum computing by teaming up with Doublespeak Games to make The Qubit Game, a journey into quantum computing.

Apr 14, 2022

Quantum measurement splits information three ways

Posted by in category: quantum physics

Types of measurements can be further distinguished by how the sum of the three types of information compares to the information in the quantum state. Whereas optimal measurements preserve the total information in the quantum state, such that it is entirely split between the three types, in non-optimal measurements some information is lost. This lost information can be due to noise in the experiment or inefficient estimates of the original quantum state. Yet sometimes it is inherent in the quantum measurement itself. Such inescapable information loss in non-optimal measurements could give insights into how the classical world appears to emerge from quantum measurements.

Preserving three-way information using photons

In their experimental study, which is published in Physical Review Letters, Seongjin Hong and colleagues at the Korea Institute of Science and Technology and the Korea Institute for Advanced Study showed how the information about a quantum state splits into these three parts. The researchers used photons to experimentally demonstrate information-preserving optimal measurements in which each photon could be in one of three possible states. They then used optical components to perform measurement and reversing operations on the photons, before characterizing their final states and demonstrating the quantitative balance between the three information types.

Apr 14, 2022

Quantum approximate optimization algorithm can be implemented using Rydberg atoms

Posted by in categories: computing, information science, particle physics, quantum physics

Existing quantum devices can actually do things that we cannot compute with classical computers. The question is only can we harness this computational power that is apparently there,” van Bijnen says. “Maybe doing arbitrary computational problems is a bit much to ask, so we are now looking at whether we can match problems well to available quantum hardware.” Many current experiments involving Rydberg atoms would likely not require any radical changes in instrumentation that is already being used, he adds.

Apr 13, 2022

The “World’s First Ever Solid State Swappable EV Battery” Is Here!!

Posted by in categories: quantum physics, sustainability

Covering the topics of Solid State Battery, World First Swappable Solid State Battery, Gogoro, Quantumscape, and more!

Don´t forget to leave your comments below and to support the channel by liking the video and subscribing. Thanks!

Continue reading “The ‘World’s First Ever Solid State Swappable EV Battery’ Is Here!!” »

Apr 13, 2022

IBM launches new Qiskit Runtime primitives

Posted by in categories: computing, quantum physics

IBM’s getting ready to lap the competition in the quantum computing race with the launch of new primitives for Qiskit Runtime. property= description.