Menu

Blog

Archive for the ‘quantum physics’ category: Page 226

Jun 12, 2022

Eternal matter waves

Posted by in categories: particle physics, quantum physics

Imagining our everyday life without lasers is difficult. We use lasers in printers, CD players, pointers, measuring devices, etc. What makes lasers so special is that they use coherent waves of light: all the light inside a laser vibrates completely in sync.

Meanwhile, quantum mechanics tells us that particles like atoms should also be considered waves. As a result, we can build ‘atom lasers’ containing coherent waves of matter. But can we make these matter waves last so they may be used in applications? In research that was published in Nature, a team of Amsterdam physicists shows that the answer to this question is affirmative.

Jun 11, 2022

Contrasting the fuzzball and wormhole paradigms for black holes

Posted by in categories: cosmology, evolution, quantum physics

Circa 2021 Evidence of string theory by black holes as fuzzballs.


Abstract: We examine an interesting set of recent proposals describing a ‘wormhole paradigm’ for black holes. These proposals require that in some effective variables, semiclassical low-energy dynamics emerges at the horizon. We prove the ‘effective small corrections theorem’ to show that such an effective horizon behavior is not compatible with the requirement that the black hole radiate like a piece of coal as seen from outside. This theorem thus concretizes the fact that the proposals within the wormhole paradigm require some nonlocality linking the hole and its distant radiation. We try to illustrate various proposals for nonlocality by making simple bit models to encode the nonlocal effects. In each case, we find either nonunitarity of evolution in the black hole interior or a nonlocal Hamiltonian interaction between the hole and infinity; such an interaction is not present for burning coal. We examine recent arguments about the Page curve and observe that the quantity that is argued to follow the Page curve of a normal body is not the entanglement entropy but a different quantity. It has been suggested that this replacement of the quantity to be computed arises from the possibility of topology change in gravity which can generate replica wormholes. We examine the role of topology change in quantum gravity but do not find any source of connections between different replica copies in the path integral for the Rényi entropy. We also contrast the wormhole paradigm with the fuzzball paradigm, where the fuzzball does radiate like a piece of coal. Just as in the case of a piece of coal, the fuzzball does not have low-energy semiclassical dynamics at its surface at energies $E\sim T$ (effective dynamics at energies $E\gg T$ is possible under the conjecture of fuzzball complementarity, but these $E\gg T$ modes have no relevance to the Page curve or the information paradox).

From: Marcel Hughes [view email]

Jun 11, 2022

Xanadu Photonic Quantum Chip Solves Trillions of Times Faster

Posted by in categories: internet, quantum physics, supercomputing

Canadian quantum computer company, Xanadu, has used its photonic quantum computer chip, Borealis, to solve a problem in 36 microseconds versus classical supercomputers taking 9,000 years. This is 7,884 trillion times faster. This runtime advantage is more than 50 million times larger than that of earlier photonic demonstrations.

An earlier quantum photonic computer used a static chip. The Borealis optical elements can all be readily programmed.

Continue reading “Xanadu Photonic Quantum Chip Solves Trillions of Times Faster” »

Jun 10, 2022

Room-temperature molecular switch discovery paves the way for faster computers, longer-lasting batteries

Posted by in categories: computing, mathematics, quantum physics

University of Queensland scientists have cracked a problem that’s frustrated chemists and physicists for years, potentially leading to a new age of powerful, efficient, and environmentally friendly technologies.

Using , Professor Ben Powell from UQ’s School of Mathematics and Physics has discovered a “recipe” which allows molecular switches to work at room temperature.

“Switches are materials that can shift between two or more states, such as on and off or 0 and 1, and are the basis of all digital technologies,” Professor Powell said. “This discovery paves the way for smaller and more powerful and energy efficient technologies. You can expect batteries will last longer and computers to run faster.”

Jun 10, 2022

Researchers observe continuous time crystal

Posted by in category: quantum physics

Researchers from the Institute of Laser Physics at Universität Hamburg have succeeded for the first time in realizing a time crystal that spontaneously breaks continuous time translation symmetry. They report their observation in a study published online by the journal Science on Thursday, 9 June, 2022.

The idea of a time crystal goes back to Nobel laureate Franck Wilczek, who first proposed the phenomenon. Similar to water spontaneously turning into ice around the , thereby breaking the of the system, the time translation symmetry in a dynamical many-body system spontaneously breaks when a time crystal is formed.

In recent years, researchers have already observed discrete or Floquet time crystals in periodically driven closed and open quantum systems. “In all previous experiments, however, the continuous-time translation symmetry is broken by a time-periodic drive,” says Dr. Hans Keßler from Prof. Andreas Hemmerich’s group at the Cluster of Excellence CUI: Advanced Imaging of Matter. “The challenge for us was to realize a system that spontaneously breaks the continuous time translation symmetry.”

Jun 10, 2022

Quantum computers proved to have ‘quantum advantage’ on some tasks

Posted by in categories: computing, mathematics, quantum physics

View insights.


Not only do quantum computers have the edge over classical computers on some tasks, but they are also exponentially faster, according to a new mathematical proof.

Jun 10, 2022

How Can a Quantum Computer Catch its Own Errors in Calculations?

Posted by in categories: computing, particle physics, quantum physics

View insights.


A collection of 16 qubits has been organized in such a way that they may be able to operate any computation without error. It is an important step toward constructing quantum computers that outperform standard ones.

When completing any task, a quantum computer consisting of charged atoms can detect its own faults. Because conventional computers constantly detect and rectify their own flaws, quantum computers will need to do the same in order to fully outperform them. Nevertheless, quantum effects can cause errors to propagate rapidly through the qubits, or quantum bits, that comprise these devices.

Continue reading “How Can a Quantum Computer Catch its Own Errors in Calculations?” »

Jun 10, 2022

Quantum physics exponentially improves some types of machine learning

Posted by in categories: mathematics, quantum physics, robotics/AI

Machine learning can get a boost from quantum physics.

On certain types of machine learning tasks, quantum computers have an exponential advantage over standard computation, scientists report in the June 10 Science. The researchers proved that, according to quantum math, the advantage applies when using machine learning to understand quantum systems. And the team showed that the advantage holds up in real-world tests.

“People are very excited about the potential of using quantum technology to improve our learning ability,” says theoretical physicist and computer scientist Hsin-Yuan Huang of Caltech. But it wasn’t entirely clear if machine learning could benefit from quantum physics in practice.

Jun 9, 2022

Experiments in twisted, layered quantum materials offer new picture of how electrons behave

Posted by in categories: materials, quantum physics

A recent experiment detailed in the journal Nature is challenging our picture of how electrons behave in quantum materials. Using stacked layers of a material called tungsten ditelluride, researchers have observed electrons in two-dimensions behaving as if they were in a single dimension—and in the process have created what the researchers assert is a new electronic state of matter.

“This is really a whole new horizon,” said Sanfeng Wu, assistant professor of physics at Princeton University and the senior author of the paper. “We were able to create a new electronic phase with this experiment—basically, a new type of metallic state.”

Our current understanding of the behavior of interacting in metals can be described by a theory that works well with two-and three-dimensional systems, but breaks down when describing the interaction of electrons in a single dimension.

Jun 8, 2022

Elusive particle discovered in a material through tabletop experiment

Posted by in categories: cosmology, particle physics, quantum physics

An interdisciplinary team led by Boston College physicists has discovered a new particle—or previously undetectable quantum excitation—known as the axial Higgs mode, a magnetic relative of the mass-defining Higgs Boson particle, the team reports in the online edition of the journal Nature.

The detection a decade ago of the long-sought Higgs Boson became central to the understanding of mass. Unlike its parent, axial Higgs mode has a , and that requires a more complex form of the theory to explain its properties, said Boston College Professor of Physics Kenneth Burch, a lead co-author of the report “Axial Higgs Mode Detected by Quantum Pathway Interference in RTe3.”

Theories that predicted the existence of such a mode have been invoked to explain “,” the nearly invisible material that makes up much of the universe, but only reveals itself via gravity, Burch said.